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Du brownien fractionnaire au multifractionnaire stable harmonisable

Le Mouvement Brownien Fractionnaire (MBF) est une généralisation du
Mouvement Brownien introduit par Kolmogorov en 1940 puis rendu célèbre dans
les années 70 pour ses applications dans divers domaines par Mandelbrot puis Van
Ness. Dépendant d’un indice de Hurst H ∈]0, 1[, le MBF possède des trajectoires
continues presque sûrement avec pour tout point τ , un exposant de Hölder
(presque sûrement) égal à H. Notons enfin que le Mouvement Brownien est le
MBF pour H = 1/2.
Voici deux simulations du MFB, d’abord avec H proche 0, ensuite avec H proche
de 1.
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Du brownien fractionnaire au multifractionnaire stable harmonisable

Dans les années 90, Benassi, Jaffard, Lévy-Vehel, Peltier et Roux ont introduit le
Mouvement Brownien Multifractionnaire, une généralisation du Mouvement
Brownien Fractionnaire (MBF). Le MBM permet une plus grande flexibilité pour
les applications en modélisation par rapport aux processus fractionnaires. Cela est
particulièrement pertinent en finance (par exemple : Bianchi et Pianese (2014,
Risk and Dec. An.)) grâce à la possibilité de moduler la régularité Höldérienne
des trajectoires à l’aide de la fonction H. Voici une illustration.
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Du brownien fractionnaire au multifractionnaire stable harmonisable
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Du brownien fractionnaire au multifractionnaire stable harmonisable

Soit (Ω,F ,P) un espace probabilisé complet. Dans le cadre des processus stables,
deux extensions du Mouvement Multifractionnaire Brownien (MBM) peuvent être
définies.

Définition 1
sec1:def1

Soit α un réel dans l’intervalle (0, 2]. Le Processus Multifractionnaire Stable
Harmonisable (PMSH) est un processus de fonction de Hurst H : R −→]0, 1[. Il
est défini pour tout réel t par l’expression suivante :

Z (t) = Re

(∫
R

e itξ − 1

|ξ|H(t)+ 1
α

dM̃α(ξ)

)
, (1.1) sec1:def1:eq1

où M̃α désigne une mesure complexe α-stable, invariante par rotation sur R, avec
pour mesure de contrôle la mesure de Lebesgue.

• Lorsque α = 2, M̃2 correspond à la mesure de Wiener orthogonalement
dispersée, ce qui donne la représentation harmonisable du MBM.
• Pour plus de détails sur la mesure M̃α, nous vous renvoyons à l’ouvrage de
Taqqu et Samorodnitsky (1994, Chapman and Hall).
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Du brownien fractionnaire au multifractionnaire stable harmonisable

Il convient de ne pas confondre ce processus avec le Processus Multifractionnaire
Stable Linéaire (PMSL).

Définition 2
sec1:def2

Soit α un réel dans l’intervalle (0, 2]. Le Processus Multifractionnaire Stable
Linéaire (PMSL) de fonction de Hurst H : R −→]0, 1[ est défini pour tout réel t
par :

Y (t) =

∫
R

(
(t − s)

H(t)− 1
α

+ − (−s)
H(t)− 1

α
+

)
dMα(s), (1.2) sec1:def2:eq1

où Mα est une mesure réelle symétrique α-stable sur R, avec pour mesure de
contrôle la mesure de Lebesgue, et où pour tous réels x , β, (x)β+ = 0 si x ≤ 0,

(x)β+ = xβ sinon.

• Lorsque α = 2, on retrouve la représentation en moyenne mobile du MBM.
• Lorsque α ∈]0, 2[, Stoev et Taqqu (2005, Fractals) ont démontré que, pour deux
réels a < b, si supt∈]a,b[ H(t) < min{α−1, 1}, alors toutes les versions de Y ont
des trajectoires non bornées sur tout sous-intervalle non vide ]a′, b′[⊂]a, b[.
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Du brownien fractionnaire au multifractionnaire stable harmonisable

Dans notre article Ayache et Louckx (2025, SPA), nous avons établi un résultat
dont une importante conséquence est le théorème suivant.

Théorème 1
sec1:thm1

Si la fonction H prend des valeurs dans un intervalle [H,H] ⊂]0, 1[ et est
γ-Höldérienne pour γ ∈]H, 1], alors

P (∀τ ∈ R, ϱZ (τ) = H(τ)) = 1. (1.3) sec1:thm1:eq1

Cela met en évidence l’intérêt de l’extension du MBM qu’est le PMSH, puisque le
MBM devient un cas particulier concernant la propriété (1.3) de régularité du
PMSH lorsqu’on a α = 2. En effet, cette propriété (1.3) a déjà été établie pour le
MBM dans Ayache, Jaffard et Taqqu (2007, Rev. Mat. Iber.).
Signalons que Benassi, Jaffard et Roux avaient prouvé auparavant sous ces
hypothèses que

∀τ ∈ R,P(ϱZ (τ) = H(τ)) = 1.
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Du brownien fractionnaire au multifractionnaire stable harmonisable

L’estimation statistique de la fonction de Hurst est un élément clé pour
exploiter un processus multifractionnaire en modélisation.
La recherche d’estimateurs statistiques pour la fonction de Hurst des processus
multifractionnaires a suscité un vif intérêt au cours des deux dernières décennies.
Voici quelques travaux récents qui ont répondu à cet objectif :
• Pour divers processus multifractionnaires gaussiens, Bardet et Surgailis (2013,
SPA) ont développé des estimateurs de la fonction de Hurst.
• Ayache et Bouly (2023, ALEA), ont construit un estimateurs de la fonction de
Hurst (supposée aléatoire) d’un processus multifractionnaire non gaussien défini
par une intégrale d’Itô.
• Dans le cadre stable (non gaussien lorsque α ̸= 2), il est également crucial
d’estimer le paramètre de stabilité α, qui caractérise les queues des lois marginales
du processus.
Ayache et Hamonier (2015, Lith. Math. J., puis 2017, Bernoulli) lorsque le PMSL
possède une version à trajectoires continues ainsi que Dang (2020, ESAIM: Prob.,
Stats), lui pour tous les cas de figure, ont élaboré des estimateurs pour la fonction
de Hurst du PMSL et pour le paramètre de stabilité α.
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Du brownien fractionnaire au multifractionnaire stable harmonisable

À notre connaissance, aucun article ne traite des estimateurs statistiques des
paramètres du PMSH.

Le but de notre travail est de construire des estimateurs statistiques
consistants et asymptotiquement normaux pour le paramètre de stabilité α
et la fonction de Hurst du PMSH, point par point.

Dans le cadre des processus multifractionnaires browniens et stables, linéaire
comme harmonisable, l’une des majeures difficultés provient de la perte des
propriétés d’autosimilarité et de stationnarité des accroissements.
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Stratégies d’estimation dans les cadres du PFSL et du PFSH
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Stratégies d’estimation dans les cadres du PFSL et du PFSH

L’exemple du Processus Fractionnaire Stable Linéaire (PFSL)
Dans le cas du PFSL, que nous noterons ici L, l’ergodicité de ce processus joue un
rôle crucial pour l’estimation de son paramètre de Hurst H. Présentons une
méthode d’ondelette qu’a utilisée Taqqu et plusieurs auteurs.
Soit ψ une ondelette mère bien choisie, définie sur R. Et, soit pour tous j , k ∈ Z,
et tout réel t,

ψj,k = ψ(2j t − k). (2.4) sec2:main:eq1

La transformée discrète d’ondelette Wj,k(L), (j , k) ∈ N2, du PFSL est donnée par

Wj,k(L) :=

∫
R
ψj,k(t)L(t) dt = 2−j

∫
R
ψ(t ′ − k)L

(
2−j t ′

)
dt ′. (2.5) sec2:main:eq2

Pour chaque γ ∈]0, α[ fixé, les statistiques V 2j

j,γ(L) sont définies par

V 2j

j,γ(L) :=
2j∑

k=1

∣∣Wj,k(L)
∣∣γ . (2.6) sec2:main:eq3
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Stratégies d’estimation dans les cadres du PFSL et du PFSH

L’autosimilarité du processus L implique que, pour chaque j ∈ N∗ fixé,

V 2j

j,γ(L)
d
= 2−j(1+H)γV 2j

0,γ(L) = 2−j(1+H)γ
2j∑

k=1

∣∣W0,k(L)
∣∣γ . (2.7) sec2:main:eq4

De plus, la propriété fondamentale d’ergodicité du PFSL implique que le processus
stationnaire

{
W0,k(L)

}
k∈Z+

est lui-même ergodique. Ainsi, en faisant usage du

théorème ergodique de Birkhoff, nous obtenons la convergence suivante:

2−jV 2j

0,γ(L)
p.s.−−−−→

j→+∞
E
(∣∣W0,0(L)

∣∣γ). (2.8) sec2:main:eq5

Donc, il résulte de (2.7) and (2.8) que

Hj,γ(L) := γ−1 − 1− (γj)−1 log2
(
V 2j

j,γ(L)
)

(2.9) sec2:main:eq6

est un estimateur statistique du parameter de Hurst H du PFSL L.
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Stratégies d’estimation dans les cadres du PFSL et du PFSH

Malheureusement, une telle stratégie ne fonctionne plus pour le Processus
Fractionnaire Stable Harmonisable puisqu’il n’est pas ergodique. Pour une
démonstration de ce fait, nous renvoyons à Cambanis, Hardin et Weron
(1987, SPA).

Ainsi, la non-ergodicité du PFSH est une difficulté majeure qui intervient donc
aussi pour le cas du PMSH.

Néanmoins, nous garderons en tête la méthode qui permet de passer d’une
estimation du paramètre de Hurst H du PFSL L à l’estimation de H(t) (t fixé)
pour le PMSL Y que nous allons rapidement esquisser ci-après.
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Stratégies d’estimation dans les cadres du PFSL et du PFSH Estimation localisée pour le PMSL

Estimation localisée pour le PMSL
On considère le champ stochastique générateur Ỹ := {Ỹ (u, v), (u, v) ∈ R×]0, 1[}
de Y , défini pour tout (u, v) ∈ R×]0, 1[ par

Ỹ (u, v) =

∫
R

(
(u − s)

v− 1
α

+ − (−s)
v− 1

α
+

)
dMα(s) (2.10) sec2:main:eq7

Nous avons alors la relation fondamentale, pour tout t ∈ R,

Y (t) = Ỹ (t,H(t)). (2.11) sec2:main:eq8

Nous définissons alors les variables aléatoires W̃j,k(Y ) similaires à Wj,k(L) et
définies pour tous j ∈ N∗, k ∈ N par

W̃j,k(Y ) := 2j
∫
R
ψ
(
2js − k

)
Y (s)ds. (2.12) sec2:main:eq9

Alors, nous déduisons de (2.11) et (2.12) l’égalité:

W̃j,k(Y ) =

∫
R
ψ(x)Ỹ

(
2−jx + 2−jk ,H(2−jx + 2−jk)

)
dx . (2.13) sec2:main:eq10
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Stratégies d’estimation dans les cadres du PFSL et du PFSH Estimation localisée pour le PMSL

Si nous choisissons des entiers naturels k vérifiant
∣∣2−jk − t

∣∣ < 2−φ(j), où
(φ(j))j∈N∗ désigne une suite d’entiers naturels non nuls croissante et divergente
vers +∞ bien choisie, alors nous aurons,

W̃j,k(Y ) =

∫
R
ψ(x)Ỹ

(
2−jx + 2−jk ,H(2−jx + 2−jk)

)
dx

≈
∫
R
ψ(x)Ỹ

(
2−jx + 2−jk ,H(t)

)
dx .

(2.14) sec2:main:eq11

Ainsi, en fixant t, la stratégie est la suivante:

• On définit un estimateur noté Hj,γ(t) de H(t) à partir du PFSL Ỹ (•,H(t)) à
partir du travail précédent sur L,
• On définit un estimateur analogue nommé H̃j,γ(t) en partant du PMSL Y .

• Cette approximation permet de comparer H̃j,γ(t) à l’estimateur Hj,γ(t), on
montre que la distance entre ces deux estimateurs tend vers 0. On parvient
finalement à montrer que H̃j,γ(t) est bien un estimateur de H(t) pour Y .
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Stratégies d’estimation dans les cadres du PFSL et du PFSH Estimateurs dans le cas du PFSH

Estimateurs dans le cas du PFSH
Dans un article récent (Ayache (2024, EJS)), des estimateurs statistiques ont été
proposés pour estimer le paramètre de stabilité α ainsi que le paramètre de Hurst
H ∈ (0, 1) pour le Processus Fractionnaire Stable Harmonisable (PSFH).

Nous notons ZH un PFSH de paramètre de stabilité α ∈]0, 2] et de paramètre de
Hurst H ∈]0, 1[.

Considérons une fonction paire ψ à valeurs réelles régulière à support contenu
dans [−4−1, 4−1], et telles que si ψ̂ désigne la transformée de Fourier, il existe une
constante c > 0 telle que pour tout réel ξ,

|ψ̂| ≤ c(1 + |ξ|)−3. (2.15)

De telles fonctions ψ et ψ̂ sont connues explicitement.
À partir de ψ, on construit la suite de fonctions (ψj,k)(j,k)∈Z2 définie par :

ψj,k(ξ) = ψ(2jξ − k), pour tous j , k ∈ Z et tout ξ ∈ R. (2.16) sec2:main:eq12
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Stratégies d’estimation dans les cadres du PFSL et du PFSH Estimateurs dans le cas du PFSH

Pour chaque j , k ∈ Z, désignons par ψ̂j,k la transformée de Fourier de ψj,k .
Nous introduisons les intégrales le long de la trajectoire de ZH , pour tous j , k ∈ Z,

Yj,k =
1

π

∫
R
Re
(
ψ̂j,k(s)

)
ZH(s)ds. (2.17) sec2:main:eq13

Les Yj,k issue de ZH sont des variables aléatoires symétriques α-stables, ayant des
propriétés très commodes.

Lemme 1
sec2:lem1

Pour tout j ∈ N∗ arbitrairement fixé, nous avons les propriétés suivantes.

(i) Alors
(
Yj,k

)
k∈N∗ est une suite de variables aléatoires indépendantes.

(ii) Les deux suites de variables aléatoires
(
Yj+1,2p−1

)
p∈N∗ et

(
Yj,2p−1

)
p∈N∗ sont

indépendantes.

(iii) Les deux suites
(
Yj,k

)
k∈N∗ et

(
2−(j−1)HY1,k

)
k∈N∗ ont la même loi (au sens

des lois fini-dimensionnelles).
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Stratégies d’estimation dans les cadres du PFSL et du PFSH Estimateurs dans le cas du PFSH

Dans l’article d’Ayache (2024, EJS), il est supposé que l’on observe une trajectoire
de ZH en temps continu sur l’intervalle [0, 1]. Dans cet article, ont été établis les
deux théorèmes suivants qui contournent la non-ergodicité précédemment
mentionnée du PFSH.

Théorème 2
sec2:thm1

Pour tout n ∈ N∗, on considère

α̂−1
n,log2

=
1

n

n∑
p=1

(
log2 |Y1,2p−1| − log2 |Y2,4p−1|

)
, (2.18) sec2:thm1:eq1

Ĥn,log2 =
1

n

n∑
p=1

(
log2 |Y2,2p−1| − log2 |Y1,2p−1|

)
, (2.19) sec2:thm1:eq2

où Y1,2p−1, Y2,2p−1 et Y2,4p−1 ont été définies dans (2.17).

Alors α̂−1
n,log2

et Ĥn,log2 sont des estimateurs statistiques fortement consistants

(convergences presque sûres) respectivement de l’inverse α−1 du paramètre α de
stabilité du processus ZH , et de son paramètre de Hurst H.
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Stratégies d’estimation dans les cadres du PFSL et du PFSH Estimateurs dans le cas du PFSH

Définissons

G (α−1) =
(
2Var(log2 |W(α)|)

)−1/2
, pour tout α−1 ∈ [2−1,+∞[, (2.20) sec2:main:eq14

où pour tout α ∈]0, 2], W(α) désigne une variable aléatoire symétrique stable
d’indice de stabilité α (c’est une loi gaussienne centrée N (0, 2) si α = 2). La
fonction G est strictement positive et continue sur [2−1,+∞[.

Théorème 3
sec2:thm2

Pour tout n ∈ N∗, les variables aléatoires D1,n,log2 et D2,n,log2 sont définies par

D1,n,log2 = G
(
2−1 ∨ α̂−1

n,log2

)
n1/2

(
Ĥn,log2 − H

)
, (2.21) sec2:thm2:eq1

et
D2,n,log2 = G

(
2−1 ∨ α̂−1

n,log2

)
n1/2

(
α̂−1
n,log2

− α−1
)
, (2.22) sec2:thm2:eq2

où pour tous a, b ∈ R, a ∨ b := max{a, b}, et où G est la fonction strictement
positive spécifiée dans (2.20). Lorsque n tend vers +∞, D1,n,log2 et D2,n,log2
convergent toutes les deux en loi vers deux variables aléatoires ayant pour loi
N (0, 1).
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Organisation de l’intervention

1 Du brownien fractionnaire au multifractionnaire stable harmonisable

2 Stratégies d’estimation dans les cadres du PFSL et du PFSH

3 Adaptation de la stratégie au cadre multifractionnaire stable harmonisable
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

À partir de maintenant, H : R →]0, 1[ vérifie les hypothèses suivantes.
• H(R) ⊂ [H,H] ⊂]0, 1[,
• H est γ-Höldérienne sur R pour γ ∈]H, 1].

Considérons le champ générateur X := {X (u, v), (u, v) ∈ R×]0, 1[} défini par

X (u, v) = Re
(∫

R

e iuξ − 1

|ξ|v+1/α
dM̃α(ξ)

)
. (3.23) sec3:main:eq1

Nous avons alors, pour tout s ∈ R,

Z (s) = X (s,H(s)). (3.24) sec3:main:eq2
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Tout d’abord, si nous devons modifier la définition des Yj,k , car sinon pour tous
j ∈ N∗ et k ∈ N,

Yj,k =
1

π

∫
R
Re
(
ψ̂j,k(s)

)
ZH(s)ds =

2−j

π

∫
R
cos
(
2−jks

)
ψ̂(2−js)ZH(s)ds, (3.25) sec3:main:eq3

mais lorsque j tend vers +∞, la fonction s 7−→ ψ̂
(
2−js

)
devient de moins en

moins localisée.
Pour pallier ce problème, nous allons changer j en −j , et bien sûr prendre le
processus Z au lieu de ZH .
Cependant, cette modification ne permet de localiser les nouveaux Yj,k qu’en 0.
En effet:

2j

π

∫
R
cos
(
2jks

)
ψ̂(2js)Z (s)ds =

1

π

∫
R
cos(ku)ψ̂(u)Z

(
2−ju

)
du (3.26) sec3:main:eq4

Par conséquent, pour localiser autour d’un point t arbitrairement, il s’agira de
translater.
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Finalement, les Yj,k sont modifiées et deviennent les variables symétriques

α-stables Z
(t)
j,k définies (pour t arbitrairement fixé) par

Z
(t)
j,k =

1

π

∫
R
Re
(
ψ̂−j,k(s − t)

)
Z (s)ds. (3.27) sec3:main:eq5

Ainsi, par changement de variable nous avons l’approximation

Z
(t)
j,k =

1

π

∫
R
cos(ku)ψ̂(u)Z

(
2−ju + t

)
du

=
1

π

∫
R
cos(ku)ψ̂(u)X

(
2−ju + t,H

(
2−ju + t

))
du

≈ 1

π

∫
R
cos(ku)ψ̂(u)X

(
2−ju + t,H(t)

)
du

=
1

π

∫
R
Re
(
ψ̂−j,k(s − t)

)
X (s,H(t))ds := X

(t)
j,k .

(3.28) sec3:main:eq6

La variable X
(t)
j,k apparue est issue du PFSH {X (s,H(t)), s ∈ R}. Dans un premier

temps, nous avons étendu à tout t arbitrairement fixé, les résultats pour un PFSH
quelconque au PFSH {X (s,H(t)), s ∈ R}.
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Nous avons alors adapté les variables aléatoires α̂−1
n,log2

, Hn,log2 , D1,n,log2 et
D2,n,log2 . Les sommes devenant dépendantes de j ∈ N∗, nous remplaçons n par
une suite (nj)j∈N∗ d’entiers naturels non nuls croissante et divergente vers +∞.
Et, nous définissons pour tout j ∈ N∗,

α−1
j (t) =

1

nj

nj∑
p=1

(
log2 |X

(t)
j+1,2p−1| − log2 |X

(t)
j,4p−1|

)
, (3.29) sec3:main:eq7

Hj(t) =
1

nj

nj∑
p=1

(
log2 |X

(t)
j,2p−1| − log2 |X

(t)
j+1,2p−1|

)
, (3.30) sec3:main:eq8

D
(α)
j (t) = G

(
2−1 ∨ α−1

j (t)
)
nj

1/2
(
α−1
j (t)− α−1

)
, (3.31) sec3:main:eq9

et
D

(H)
j (t) = G

(
2−1 ∨ α−1

j (t)
)
nj

1/2
(
Hj(t)− H(t)

)
. (3.32) sec3:main:eq10

En généralisant les démonstrations des deux théorèmes mentionnés de l’article
Ayache (2024, EJS), nous avons obtenu les Propositions 1 et 2 suivantes, en
obtenant de surcrôıt des vitesses de convergence des estimateurs.
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Proposition 1
sec3:prop1

Fixons arbitrairement t ∈ [0, 1]. On suppose connue une trajectoire du PFSH
{X (s,H(t)), s ∈ R} sur [0, 1]. Alors,

(
α−1
j (t)

)
j∈N∗ est un estimateur statistique

consistant α−1 à partir du PFSH {X (s,H(t)), s ∈ R}, et nous avons la vitesse

n
θ/2
j

∣∣α−1
j (t)− α−1

∣∣ P−−−−→
j→+∞

0, pour tout θ ∈ [0, 1[, (3.33) sec3:prop1:eq1

De plus,
(
α−1
j (t)

)
j∈N∗ devient fortement consistant dès que la série

∑
j∈N∗

nθ0−1
j

converge pour un certain θ0 ∈ [0, 1[. Dans ce cas, on a

n
θ0/2
j

∣∣α−1
j (t)− α−1

∣∣ p.s−−−−→
j→+∞

0. (3.34) sec3:prop1:eq2

Enfin, quel que soit le mode rencontré de convergence, (α−1
j (t))j∈N∗ est

asymptotiquement normal:

D
(α)
j (t)

d−−−−→
j→+∞

N (0, 1). (3.35) sec3:prop1:eq3
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Proposition 2
sec3:prop2

Fixons un point t ∈ [0, 1]. Supposons que l’on connaisse une trajectoire du PFSH
X (s,H(t)), s ∈ R sur [0, 1]. Alors (Hj(t))j∈N∗ est un estimateur statistique de
H(t) issue du PFSH {X (s,H(t)), s ∈ R}. Et, nous avons la vitesse analogue pour
Hj(t):

n
θ/2
j

∣∣Hj(t)− H(t)
∣∣ P−−−−→

j→+∞
0, pour tout θ ∈ [0, 1[, (3.36) sec3:prop2:eq1

et (Hj(t))j∈N∗ devient fortement consistant, s’il existe θ0 ∈ [0, 1) tel que la série∑
j∈N∗

nθ0−1
j converge. De plus, pour ce θ0, nous obtenons la vitesse

n
θ0/2
j

∣∣Hj(t)− H(t)
∣∣ p.s−−−−→

j→+∞
0 (3.37) sec3:prop2:eq2

Enfin, quel que soit le mode de convergence, (Hj(t))j∈N∗ est asymptotiquement
normal:

D
(H)
j (t)

d−−−−→
j→+∞

N (0, 1). (3.38) sec3:prop2:eq3
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Remarque 1

Les démonstrations des deux propositions précédentes s’appuient sur des
théorèmes classiques tels que le théorème de la limite centrale et la loi des grands
nombres (Lindeberg), ainsi que sur des propriétés d’indépendance et des résultats

relatifs à la loi de la suite (X
(t)
j,k )j,k∈N∗ (héritées de celles des Yj , k)

Lemme 2
sec3:lem1

Pour tous j ∈ N∗ et t ∈ [0, 1] arbitrairement fixés, nous avons les propriétés
suivantes.

(i)
(
X

(t)
j,k

)
k∈N∗ est une suite de variables aléatoires indépendantes.

(ii) Les deux suites de variables aléatoires
(
X

(t)
j+1,2p−1

)
p∈N∗ et

(
X

(t)
j,2p−1

)
p∈N∗ sont

indépendantes.

(iii) Les deux suites
(
X

(t)
j,k

)
k∈N∗ et

(
2−(j−1)H(t)X

(t)
1,k

)
k∈N∗ ont la même loi (au sens

des lois fini-dimensionnelles).
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Par analogie, on pose pour tous j , k ∈ N∗ et t ∈ [0, 1]:

α̃−1
j (t) =

1

nj

nj∑
p=1

(
log2(|Z

(t)
j+1,2p−1|+ 2−(j+1))− log2(|Z

(t)
j,4p−1|+ 2−j)

)
, (3.39) sec3:main:eq11

H̃j(t) =
1

nj

nj∑
p=1

(
log2(|Z

(t)
j,2p−1|+ 2−j)− log2(|Z

(t)
j+1,2p−1|+ 2−(j+1))

)
, (3.40) sec3:main:eq12

D̃
(α)
j (t) = G

(
2−1 ∨ α̃−1

j (t)
)
n
1/2
j

(
α̃−1
j (t)− α−1

)
, (3.41) sec3:main:eq13

D̃
(H)
j (t) = G

(
2−1 ∨ α̃−1

j (t)
)
n
1/2
j

(
H̃j(t)− H(t)

)
. (3.42) sec3:main:eq14

Les propriétés d’indépendances pour (X
(t)
j,k )j,k∈N∗ ne sont plus valides pour la suite

(Z
(t)
j,k )j,k∈N∗ .
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Pour obtenir les prochains théorèmes qui sont les principaux résultats de notre
travail, nous avons fait usage de l’inégalité triangulaire,∣∣α̃−1

j (t)− α−1
∣∣ ≤ ∣∣α̃−1

j (t)− α−1
j (t)

∣∣+ ∣∣α−1
j (t)− α−1

∣∣, (3.43) sec3:main:eq15

et ∣∣H̃j(t)− H(t)
∣∣ ≤ ∣∣H̃j(t)− Hj(t)

∣∣+ ∣∣Hj(t)− H(t)
∣∣. (3.44) sec3:main:eq16

Les majeures difficultés ont été à ce stade de prouver que les distances∣∣α̃−1
j (t)− α−1

j (t)
∣∣ et |H̃j(t)− Hj(t)| tendent vers 0, puis de déterminer les modes

et vitesses de convergences vers 0 de ces distances. Puis l’on a fait usage des
Propositions 1 et 2 pour conclure.
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Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

Théorème 4 (Première partie)
sec3:thm1

Supposons connue une trajectoire de Z sur l’intervalle [0, 1].
(a) Supposons la condition suivante

nj = O
(
2φ(j)

)
, lorsque j tend vers +∞, (3.45) sec3:thm1:eq1

où (φ(j))j∈N∗ désigne une suite de réels positifs croissante divergente vers +∞ et
vérifiant

φ(j) = o(j), quand j tend vers +∞. (3.46) sec3:thm1:eq2

Alors, pour tout t ∈ [0, 1], on a les vitesses, pour tout θ ∈ [0, 1[,

n
θ/2
j

∣∣α̃−1
j (t)− α−1

∣∣ P−−−−→
j→+∞

0, et n
θ/2
j

∣∣H̃j(t)− H(t)
∣∣ P−−−−→

j→+∞
0. (3.47) sec3:thm1:eq3

Par conséquent, (α̃−1
j (t))j∈N∗ et (H̃j(t))j∈N∗ sont des estimateurs statistiques

consistants respectivement de α−1 et H(t).
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Théorème 5 (Seconde partie)

(b) De plus, sous la même condition (1.3), s’il existe θ0 ∈ [0, 1[ tel que la série∑
j∈N∗

nθ0−1
j converge, alors pour chaque t ∈ [0, 1], les deux estimateurs statistiques

(α̃−1
j (t))j∈N∗ et (H̃j(t))j∈N∗ sont fortement consistants.

Cela signifie que pour chaque t ∈ [0, 1], les convergences dans (3.47) deviennent
presque sûres sur un évènement Ωα(t) de probabilité 1, et on a les vitesses:

n
θ0/2
j

∣∣α̃−1
j (t)− α−1

∣∣ p.s−−−−→
j→+∞

0, et n
θ0/2
j

∣∣H̃j(t)− H(t)
∣∣ p.s.−−−−→

j→+∞
0. (3.48) sec3:thm1:eq5

Théorème 6
sec3:thm2

Supposons connue une trajectoire de Z sur l’intervalle [0, 1]. Si la condition (3.45)
est vérifiée par la suite (nj)j∈N∗ , alors pour tout t ∈ [0, 1], les deux estimateurs
statistiques sont asymptotiquement normaux:

D̃
(α)
j (t)

d−−−−→
j→+∞

N (0, 1), et D̃
(H)
j (t)

d−−−−→
j→+∞

N (0, 1). (3.49) sec3:thm2:eq1
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Organisation de l’intervention

1 Du brownien fractionnaire au multifractionnaire stable harmonisable

2 Stratégies d’estimation dans les cadres du PFSL et du PFSH

3 Adaptation de la stratégie au cadre multifractionnaire stable harmonisable

4 Perspective d’amélioration en vue de simulations
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Perspective d’amélioration en vue de simulations

• Utilisation de trajectoires discrétisées de Z . L’approche que l’on a faite
présuppose la connaissance d’une trajectoire de Z sur [0, 1] entièrement. Les
données observées sont souvent discrétisées en raison des limites pratiques des

expériences ou des observations numériques. Les intégrales définissant les Z
(t)
j,k

seront alors discrétisées, et donc il faudra construire nos estimateurs statistiques à

partir de ces nouveaux Z
(t,n)
j,k . Signalons que nous avons établi durant notre travail

un lemme intermédiaire allant dans le sens de ce troisième objectif.

Lemme 3
sec4:lem1

Considérons, pour tous j , k ∈ N∗, n ∈ N∗ et t ∈ [0, 1]:

Z
(t,n)
j,k :=

2j

π

∑
|m|≤4n

Z (dn,m)

∫ dn,m+1

dn,m

cos
(
2jk(s − t)

)
ψ̂
(
2j(s − t)

)
ds, (4.50) sec4:lem1:eq1

où pour tout m ∈ Z, dn,m = 2−nm. Alors sur un évènement universel presque sûr
Ω∗

α, pour tous j , k ∈ N∗ et t ∈ [0, 1], nous avons

Z
(t,n)
j,k

p.s−−−−→
n→+∞

Z
(t)
j,k . (4.51) sec4:lem1:eq2
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Merci pour votre attention.
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