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Introduction

• Since the Haar works, in the 1910s’, we know that there exist orthonormal bases
for L2(R) in the form

{ψj,k(•), (j , k) ∈ Z2} =
{
2

j
2ψ

(
2j • −k

)
, (j , k) ∈ Z2

}
, (1.1)

built by dilatation of powers of 2 and by translation by integers of a function ψ
named mother function.
• The Haar system is generated by the mother discontinuous function defined for
all real x by

ψ(x) = 1(0, 12 ]
(x)− 1( 1

2 ,1]
(x). (1.2)

• In the 80s’ and the 90s’, the construction of smoother bases in this form was
systematized by I. Daubechies, S. Mallat and Y. Meyer in the frame of wavelets
theory.
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Multi-Resolution Analysis (MRA)

Definition 2.1

Let (H, ∥ · ∥) a separable Hilbert space. One says that a sequence {ek , k ∈ Z}
forms a Riesz basis of H if it satisfies the following properties:

(1) span{ek , k ∈ Z} = H,

(2) {ek , k ∈ Z} is a Riesz sequence, that means there are two constants
0 < c ≤ c ′ such that for each complex-valued sequence (ak)k∈Z with a finite
number of non-vanishing terms, one has

c
∑
k∈Z

|ak |2 ≤
∥∥∥∑
k∈Z

akek

∥∥∥2 ≤ c ′
∑
k∈Z

|ak |2.

Remark 2.1

Any Riesz basis of H is the image of an orthonormal basis of H by an isomorphism
of H.
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Multi-Resolution Analysis (MRA)

Definition 2.2
MRA

A Multi-Resolution Analysis (MRA) of L2(R) is a sequence (Vj)j∈Z of closed

subspaces of L2(R) satisfying:
(a) For all j ∈ Z, Vj ⊂ Vj+1,

(b)
⋂
j∈Z

Vj = {0},

(c)
⋃
j∈Z

Vj is dense in L2(R),

(d) For all j ∈ Z, f ∈ Vj ⇐⇒ f (2× •) ∈ Vj+1,

(e) There exists g ∈ V0 such that {g(• − k), k ∈ Z} is a Riesz basis of V0.

Remark 2.2

Observe that there are many sequences of subspaces of L2(R) which satisfies (a),
(b) and (c). However, properties (d) and (e) are specific to the concept of MRA.
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Multi-Resolution Analysis (MRA)

Lemma 2.1

Let h ∈ L2(R) and 0 < c ≤ c ′. The following assertions are equivalent:

(i) {h(• − k), k ∈ Z} is a Riesz sequence of L2(R), that means for each
complex-valued sequence (ak)j∈Z with finite number of non-vanishing terms,
one has

c
∑
k∈Z

|ak |2 ≤
∫
R

∣∣∣∑
k∈Z

akh(x − k)
∣∣∣2dx ≤ c ′

∑
k∈Z

|ak |2

(ii) For almost all ξ ∈ R,

c ≤
∑
k∈Z

|ĥ(ξ + 2kπ)|2 ≤ c ′.

Corollary 2.1

Let h ∈ L2(R). The following assertions are equivalent:

(i) {h(• − k), k ∈ Z} is an orthonormal sequence of L2(R),
(ii) For almost all ξ ∈ R, ∑

k∈Z
|ĥ(ξ + 2kπ)|2 = 1.
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Multi-Resolution Analysis (MRA)

Proposition 2.1
tradMRA

(1) Property (d) in Definition 2.2 means that each space Vj is a dilated version
of the reference space V0,

For all j ∈ Z, Vj =
{
f
(
2j × •

)
, f ∈ V0

}
.

(2) * Property (e) in Definition 2.2 implies that V0 is the subspace on L2(R) of
the functions whose Fourier transform can be expressed for almost all ξ ∈ R
as

f̂ (ξ) = λf (ξ)ĝ(ξ),

where λf ∈ L2
( R
2πZ

)
.
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Multi-Resolution Analysis (MRA)

Proposition 2.2

Let us (Vj)j∈Z a MRA of L2(R). For every j ∈ Z, denote by Wj the subspace of
Vj+1 satisfying

Vj+1 = Vj

⊥
⊕Wj .

Then it follows from Proposition 2.1, (1) the fact

Wj =
{
f
(
2j •

)
, f ∈ W0

}
.

Moreover, it follows from property (a),(b) and (c) of Definition 2.2, that for every
J ∈ Z,

L2(R) = VJ

⊥
⊕
(+∞⊕

j=J

Wj

)
, and L2(R) =

⊥⊕
j∈Z

Wj .
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Multi-Resolution Analysis (MRA)

Example 1

• Assume that for every j ∈ Z,

Vj = {f ∈ L2(R),∀k ∈ Z, f |[ k

2j
, k+1

2j
) = constant}, and g = 1[0,1).

{Vj , j ∈ Z} forms a MRA on L2(R) called Haar MRA. In this case,
{g(• − k), k ∈ Z} is a Riesz and orthonormal basis of V0. This Haar MRA is
simple, however g being discontinuous, it makes a drawback.

• Regularization of Haar MRA:
Let m ≥ 1 be a fixed integer and for every j ∈ Z, set

Vj =
{
f ∈ L2(R) ∩ Cm−1(R),∀k ∈ Z, f |[ k

2j
, k+1

2j
) ∈ Rm[x ]

}
,

, and g = 1[0,1) ∗ · · · ∗︸ ︷︷ ︸
m times

1[0,1) B-spline of order m.

{Vj , j ∈ Z} forms a MRA of L2(R), and supp(g) = [0,m + 1), and
{g(• − k), k ∈ Z} is also a Riesz basis of V0 but no longer orthonormal.
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Multi-Resolution Analysis (MRA)

Starting from a MRA and g , one can always build a function φ such that
{φ(• − k), k ∈ Z} forms an orthonormal basis of V0.

Proposition 2.3

• * Let φ ∈ L2(R) be the function defined for all ξ ∈ R by its Fourier transform,

φ̂(ξ) =
ĝ(ξ)[∑

k∈Z
|ĝ(ξ + 2πk)|2

] 1
2

.

Then, there exist two sequences (aℓ)ℓ, (bℓ)ℓ ∈ ℓ2(Z) such that, in L2(R),

φ =
∑
ℓ∈Z

aℓg(• − ℓ), and g =
∑
ℓ∈Z

bℓφ(• − ℓ)

• Moreover, {φ(• − k), k ∈ Z} is an orthonormal basis of V0. As a consequence,

for all J ∈ Z, {2 J
2φ(2J • −k), k ∈ Z} is an orthonormal basis of VJ .
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Multi-Resolution Analysis (MRA)

Proposition 2.4
Prop m_0

* Let φ be a function such that {φ(• − k), k ∈ Z} is an orthonormal basis of V0.
Then there is a function m0 ∈ L2( R

2πZ ) satisfying for almost all ξ ∈ R,

φ̂(2ξ) = m0(ξ)φ̂(ξ), (2.3) m_0

and
|m0(ξ)|2 + |m0(ξ + π)|2 = 1. (2.4) m_02

In particular m0(0) = 1, and m0(π) = 0.

φ is usually called scale function, according to (2.3).

m0 is named quadratic filter.

Hence, for almost ξ ∈ R,

φ̂(ξ) =
+∞∏
k=1

m0

(
2−kξ

)
.
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Regularity of wavelet bases and ergodic theory

* Let us fix arbitrarily α ∈ R+, and consider

Cα(R) = {ϕ ∈ L1(R), ϕ Hölder function of exponent α}

Rα(R) = {ϕ ∈ L1(R), x 7−→ (1 + |x |α)|ϕ̂(x)| ∈ L1(R)}

Dα(R) = {ϕ ∈ L1(R), x 7−→ (1 + |x |α)|ϕ̂(x)| ∈ L∞(R)}
Cα
c (R) = {ϕ ∈ L1(R), ϕ Hölder function of exponent α with compact support}

Dα
c (R) = {ϕ ∈ L1(R), with compact support, x 7−→ (1 + |x |α)|ϕ̂(x)| ∈ L∞(R)}

.

One has
• For all ε > 0, Dα+1+ε(R) ⊂ Rα(R) ⊂ Cα(R),

• Cα
c (R) ⊂ Dα

c (R).

• * We eventually make the remark that if φ(ξ) = 2
∑
k∈Z

hkφ(2ξ − k), with

(hk)k∈Z ∈ ℓ2(Z), then if the hk ’s are null except a finite number, then m0 is
polynomial, and φ has compact support.
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Regularity of wavelet bases and ergodic theory

* If m0 is smooth, 2π-periodic, one factorizes on this form

m0(x) =
(1 + e ix

2

)N

p(x),

where N is the degree of the root π of m0.
Hence, for almost all ξ ∈ R,

∣∣φ̂(ξ)∣∣ =
∣∣∣2 sin ( ξ

2

)
ξ

∣∣∣Nπ1(ξ),
where π1(ξ) :=

+∞∏
k=1

∣∣p(2−kξ
)∣∣. One sets u(ξ) := |p(ξ)|, and for all n ∈ N,

un(ξ) :=
n∏

k=1

u
(
2−kξ

)
.
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Regularity of wavelet bases and ergodic theory

Example 2

Choosing p being polynomial allowing to create wavelets bases with compact
supports is the Daubechies method.
(u(ξ))2 = |p(ξ)|2 can be expressed as a polynomial function P with variable
y = cos2( ξ2 ), and the relation (2.4) becomes:

yNP(1− y) + (1− y)NP(y) = 1,

with P ≥ 0 over [0, 1]. A solution is done by PN with degree inferior to N:

PN(y) =
N−1∑
k=0

( N − 1 + k

k

)
yk .
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Regularity of wavelet bases and ergodic theory

Lemma 3.1

Let’s introduce the sequence (bn)n∈N defined for all n ∈ N by

bn := sup
ξ∈R

log2 un(ξ)

n
.

The sequence (bn)n∈N is sub-additive and so converges to the limit

b := inf
n≥1

bn ∈ R ∪ {−∞}.

b is called critic exponent of the quadratic filter m0.

Theorem 3.1

• If α < N − b, then φ belongs to Dα(R), Rα−1(R), and Cα−1(R).

• Assume that {φ(• − k), k ∈ Z} is orthonormal and φ compactly supported.
then if α > N − b then φ is not Hölder with exponent α.
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Regularity of wavelet bases and ergodic theory

Theorem 3.2

If u is continuous, 2π-periodic, Lipschitz on 0, and such that u(0) = 1, then:

b = inf{α > 0, there exists M > 0 such that for all ξ ∈ R, π1(ξ) ≤ M(1 + |ξ|α)}

By 2π-periodicity, we must study the ergodic product observing for all ξ ∈ R,

sup
ξ∈R

un(ξ) = sup
ξ∈R

un
(
2nξ

)
= sup

ξ∈R

n∏
k=1

un
(
2kξ

)
.

Precisely, with the transformation T : ξ 7−→ 2ξ mod 2π, studying the behavior of
the supremum of an ergodic product.

Now, let X be a metric compact space, and T : X −→ X a continuous
transformation. Let us consider I the compact convex set of probability measures
on X invariant by T .
Let us fix g a real-valued continuous function on X . Let us denote for all µ ∈ I,

µ(g) :=

∫
X

g(ξ)dµ(ξ).
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Regularity of wavelet bases and ergodic theory

As before, the sequence
(
sup
ξ∈X

n−1∑
k=0

g(T kξ)
)
n≥1

is sub-additive.

Therefore, the sequence (βn(g))n≥1 defined for all n ≥ 1 by

βn(g) :=
1

n
sup
ξ∈X

n−1∑
k=0

g(T kξ)

converges to a limit denoted β(g).

Theorem 3.3

For all µ ∈ I, β(g) ≥ µ(g).
Moreover, there exists an ergodic measure µ0 ∈ I such that β(g) = µ0(g)
Finally, there exists x0 ∈ X satisfying

lim
n→+∞

1

n

n−1∑
k=0

g(T kx0) = β(g) = µ0(g).
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Regularity of wavelet bases and ergodic theory

Now, consider the polynomial function PN from Daubechies wavelets, as the
example before, and its associated trigonometric polynomial function p.

Theorem 3.4

The ergodic probability measure µ0 maximizing the integral of log2 |p| is the
measure carried by the periodic points

2π

3
and

4π

3
.

Theorem 3.5

Let us denote α(N) the Hölder exponent of the function φN associated to the
polynomial function PN . Then we have the estimation:

lim
N→+∞

α(N)

N
= 1− log2(3)

2
.
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Regularity of wavelet bases and ergodic theory

Finally, let’s introduce the Meyer wavelets bases.

Definition 3.1

S(R), the Schwarz class is the space of infinitely differentiable functions f which
satisfy for all p,N ∈ N,

sup
x∈R

(1 + |x |)N |f (p)(x)| < +∞.

Note that S(R) is invariant by the Fourier transformation.

We use the same notations as Proposition 2.4. Let m1 ∈ L2
( R
2πZ

)
be the function

defined for almost all ξ ∈ R as

m1(ξ) = e−iξm0(ξ + π).

Then, one has for almost all ξ ∈ R,{
|m1(ξ)|2 +m1(ξ + π)|2 = 1

m0(ξ)m1(ξ) +m0(ξ + π)m1(ξ + π) = 0
.
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Regularity of wavelet bases and ergodic theory

Theorem 3.6 (Mallat and Meyer, 1985, 1986)

For almost all ξ ∈ R, we set

ψ̂(2ξ) = m1(ξ)φ̂(ξ).

(i) {ψ(• − k), k ∈ Z} is an orthonormal basis of W0.

(ii) {ψj,k , j , k ∈ Z} = {2
j
2ψ(2j • −k), j , k ∈ Z} is an orthonormal basis of L2(R).

Theorem 3.7 (Meyer, 1985, 1986)

There exists a scaling function φ and a mother wavelet ψ which generate an
orthonormal basis of L2(R) and satisfy the following properties
(i) φ,ψ ∈ S(R).

(ii) supp(φ̂) ⊂
[
− 4π

3 ,
4π
3

]
, and for all ξ ∈

[
− 2π

3 ,
2π
3

]
, φ̂(ξ) = 1.

(iii) supp(ψ̂) ⊂
[
− 8π

3 ,−
2π
3

]
∪
[
2π
3 ,

8π
3

]
. (ψ̂ is null on a neighborhood of 0.)

A wavelet basis generated by such φ and ψ is called a Meyer wavelet basis.
Moreover, {ψ̂j,k , j , k ∈ Z}, is also an orthonormal basis of L2(R).
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Study of path’s roughness of stochastic processes
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Study of path’s roughness of stochastic processes

Let’s begin with an historical example, using Haar basis, and Brownian Motion
(BM). Now let {W (t) : t ∈ [0, 1]} be a BM over [0, 1]. It can be expressed as the
Wiener integral,

W (t) =

∫ 1

0

1[0,t](s)dW (s)

By expanding the function 1[0;t](s) in the Haar system, it follows that, in L2(R),

1[0,t](s) = t1[0,1](s) +
+∞∑
j=0

2j−1∑
k=0

2−
j
2 τ
(
2j t − k

)
2

j
2ψ

(
2js − k

)
,

where τ is the triangle function based on [0, 1] such that τ( 12 ) =
1
2 .

By isometry property of Wiener measure, one gets, with a.s uniform convergence,

W (t) = tε0 +
+∞∑
j=0

2j−1∑
k=0

2−
j
2 τ
(
2j t − k

)
εj,k ,

where ε0 = W (1) ∼ N (0, 1), and εj,k = 2
j
2

∫ 1

0
ψ
(
2js − k

)
dW (s) ∼ N (0, 1) if

j > 0 and 0 ≤ k ≤ 2j − 1.
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Study of path’s roughness of stochastic processes

(Ω,A,P) is probability complete space. Let us now introduce Multifractional
Brownian Motion (MBM) Z = {Z (t), t ∈ R}, by its harmonizable integral.
Consider H : R −→ (0, 1) a function such that H(R) ⊂ [H,H] ⊂ (0, 1), then one
defines for all t ∈ R

Z (t) =∗
∫
R

e itξ − 1

(iξ)H(t)+ 1
2

dŴ (ξ),

(Jaffard, Peltier and Roux harmonizable representation, 90s’), where Ŵ is the
orthogonally scattered Wiener measure (it can be considered as the Fourier
transform of the Wiener measure).

• Modulo a constant, if H is a constant function in (0, 1), then Z is the Fractional
Brownian Motion (FBM) with Hurst index H. And if H = 1

2 , we find the
Brownian Motion.
• FBM was introduced in 1940 by Kolmogorov and made popular in 60s’ by
Mandelbrot and Van Ness. It has turned out to be a powerful tool in modeling
and has been applied in many areas (Finance, Hydrology, Signals et Images
processing, Telecommunication, among other domains).
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Study of path’s roughness of stochastic processes

• Despite its usefulness, FBM model has some limitations, an important one of
them is that the roughness of its path remains everywhere the same: the
pointwise Hölder exponent of the FBM Z is almost surely equal to H everywhere.

Here are two simulations of FBM, on the left with H = 0.3 on the right with
H = 0.7.
• Making variable H is an idea in the 90s’.
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Study of path’s roughness of stochastic processes

• Simulation of MBM with H(t) = 0.1 + 0.06t (remark that there exists
simulation methods using wavelets for FBM and MBM).
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Study of path’s roughness of stochastic processes

Let the field X = {X (u, v), (u, v) ∈ R× (0, 1)} defined for all (u, v) ∈ R× (0, 1)
by

X (u, v) :=

∫
R

e iu·ξ − 1

(iξ)v+
1
2

dŴ (ξ). (4.5) sec3:eq1

X is called the field generating the MBM Z since

∀t ∈ R,Z (t) = X (t,H(t)). (4.6) sec3:eq3

Considering (4.6), properties of Z are strongly influenced by those of X .
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Study of path’s roughness of stochastic processes

• For all (j , k) ∈ Z2, one sets εj,k :=

∫
R
ψ̂j,k(ξ)dŴ (ξ).

By the definitions of Ŵ and ψ̂j,k , since

supp(ψ̂j,k) ⊂
[
− 2j+3π

3
,
2j+3π

3

]
\
(
− 2j+1π

3
,
2j+1π

3

)
,

the sequence (εj,k)(j,k)∈Z2 is i.i.d N (0, 1).
• One denotes Ψ the deterministic function defined for all (x , v) ∈ R2 by

Ψ(x , v) :=
1√
2π

∫
R
e ixη

ψ̂(η)

|η|v+ 1
2

dη.

We have the ”well-localization” in y uniformly in v restricted to any compact
interval of R for this function. More precisely, for all n,m ∈ Z+, for all L ∈ N, for
all M > 0, one has

sup
{
(3 + |x |)L

∣∣∂nx∂mv Ψ(x , v)
∣∣, (x , v) ∈ R× [−M,M]

}
< +∞.

A.Ayache, C.Louckx (ULille) Two topics around wavelets theory SYMPA, LAMFA, January, the 28th, 2025 29 / 32



Study of path’s roughness of stochastic processes

Theorem 4.1 (wavelet representation of Generator of MBM)

The generator of MBF X = {X (u, v), (u, v) ∈ R× (0, 1)} can be represented as

X (u, v) =
∑

(j,k)∈Z2

2−jv
[
Ψ
(
2ju − k , v

)
−Ψ

(
− k, v

)]
εj,k ,

where the series is, on a event Ω̃ of probability 1, uniformly convergent in (u, v),
on each compact interval of R× (0, 1).

Corollary 4.1

One sets, on Ω̃,

Z̃ (t) =
∑

(j,k)∈Z2

2−jv
[
Ψ
(
2j t − k ,H(t)

)
−Ψ

(
− k,H(t)

)]
εj,k ,

Z̃ is a continuous version of Z ⇐⇒ H is continuous.
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Study of path’s roughness of stochastic processes

With this modification and its properties, one obtains

Theorem 4.2

If H ∈ Cγ(R), with γ ∈ (H, 1) then

P
(
∀τ ∈ R, ϱZ̃ (τ) = H(t)

)
= 1,

where the random variable ϱZ̃ (τ) denotes the pointwise Hölder exponent on τ of

Z̃ .

The choice of the basis ψ̂j,k to build Z̃ is crucial to get this statement.
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Study of path’s roughness of stochastic processes
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