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Introduction

e Since the Haar works, in the 1910s’, we know that there exist orthonormal bases
for L2(R) in the form

{Gik(e), (. k) € 72} = {259)(2 o —kK), (j, k) € 2}, (1.1)

built by dilatation of powers of 2 and by translation by integers of a function 1
named mother function.
e The Haar system is generated by the mother discontinuous function defined for
all real x by

U(x) = Lo,1y(x) = Lz (%) (1.2)
e In the 80s’ and the 90s’, the construction of smoother bases in this form was
systematized by |. Daubechies, S. Mallat and Y. Meyer in the frame of wavelets
theory.
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Multi-Resolution Analysis (MRA)

Organization of the talk

© Multi-Resolution Analysis (MRA)
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Multi-Resolution Analysis (MRA)

Definition 2.1

Let (H,|| - ||) a separable Hilbert space. One says that a sequence {ex, k € Z}
forms a Riesz basis of H if it satisfies the following properties:

(1) span{ex, k€ Z} =H,

(2) {ex, k € Z} is a Riesz sequence, that means there are two constants
0 < ¢ < ¢’ such that for each complex-valued sequence (ax)kez with a finite
number of non-vanishing terms, one has

ey lakf < HZ akekH2 <Dl

kEZ k€EZ k€EZ

Remark 2.1

Any Riesz basis of H is the image of an orthonormal basis of H by an isomorphism
of H.
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Multi-Resolution Analysis (MRA)

Definition 2.2

A Multi-Resolution Analysis (MRA) of L2(R) is a sequence (V;)jcz of closed
subspaces of L2(R) satisfying:
(a) Forallj€Z, V; C Vi,
(b) ) V; = {0},
JEL
() U V; is dense in L*(R),
jez
(d) ForalljeZ, f e V<= f(2xe)e Vi,
(e) There exists g € Vj such that {g(e — k), k € Z} is a Riesz basis of V.

Remark 2.2 |

Observe that there are many sequences of subspaces of L?(R) which satisfies (a),
(b) and (c). However, properties (d) and (e) are specific to the concept of MRA.
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Multi-Resolution Analysis (MRA)

Lemma 2.1

Let h € L2(R) and 0 < ¢ < ¢'. The following assertions are equivalent:

(i) {h(e — k), k € Z} is a Riesz sequence of L%(R), that means for each
complex-valued sequence (ax)jez with finite number of non-vanishing terms,

one has )
CZ lag|? < / ’Z akh(x — k)’ dx < C’Z |lax|?
R

kez keZ keZ
(i) For almost all £ € R,

c <Y [h(€+2km)P < c'.
kEZ

Corollary 2.1
Let h € L>(R). The following assertions are equivalent:
(i) {h(e — k), k € Z} is an orthonormal sequence of L?(R),
(i) For almost all £ € R,
> [h(€ + 2km)? = 1.

keZ

A

R — -
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Multi-Resolution Analysis (MRA)

Proposition 2.1

(1) Property (d) in Definition 2.2 means that each space V; is a dilated version
of the reference space V,

Forallj € Z, V;={f(2 x o), f € Vo}.

(2) * Property (e) in Definition 2.2 implies that Vq is the subspace on L?(R) of
the functions whose Fourier transform can be expressed for almost all £ € R
as

~

(&) = Ar(§)&(9),

where \r € [?(5%).
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Multi-Resolution Analysis (MRA)

Proposition 2.2

Let us (V})jez a MRA of L*(R). For every j € Z, denote by W; the subspace of
Vii1 satisfying

L
Vin= Ve W,
Then it follows from Proposition 2.1, (1) the fact
={f(Ye), feW}.
Moreover, it follows from property (a),(b) and (c) of Definition 2.2, that for every

Jez,
+oo
LR)=V, & (@ W) and L3(R @ W
j=J JEZ
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Multi-Resolution Analysis (MRA)

e Assume that for every j € Z,

Vi ={f € L*(R),Vk € Z, f|jx &1y = constant}, and g = 1o 1).
2 2

{V,,j € Z} forms a MRA on L*(R) called Haar MRA. In this case,
{g(e — k), k € Z} is a Riesz and orthonormal basis of V4. This Haar MRA is
simple, however g being discontinuous, it makes a drawback.

e Regularization of Haar MRA:
Let m > 1 be a fixed integer and for every j € Z, set

V= {f € P(R)NC"(R),Vk € Z, f|;x w1y € Rm[x]},
207 2

,and g = 1o 1)*---%x1o,1) B-spline of order m.

m times
{V},j € Z} forms a MRA of L?(R), and supp(g) = [0, m + 1), and
{g(e — k), k € Z} is also a Riesz basis of V, but no longer orthonormal.
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Multi-Resolution Analysis (MRA)

Starting from a MRA and g, one can always build a function ¢ such that
{¢(® — k), k € Z} forms an orthonormal basis of V.

Proposition 2.3
o * Let ¢ € L%(R) be the function defined for all £ € R by its Fourier transform,

B(6) = T
[ lgte +2m0p]”

kEZ

Then, there exist two sequences (a;)e, (be)e € ¢?(Z) such that, in L*(R),

©= Z ag(e—¥¢), and g = Z byp(e — £)

LEZ LeZ

e Moreover, {o(e — k), k € Z} is an orthonormal basis of V. As a consequence,
for all J € Z, {22p(2” @ —k), k € Z} is an orthonormal basis of V.
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Multi-Resolution Analysis (MRA)

Proposition 2.4

* Let v be a function such that {¢(e — k), k € Z} is an orthonormal basis of V.

/\

Then there is a function mgy € L2(&Z) satisfying for almost all £ € R,
P(28) = mo(£)@(8), (23)
and
|mo (€)1 + [mo(€ + =) = 1. (2.4)

In particular mo(0) = 1, and mg(m) = 0.

o is usually called scale function, according to (2.3).

mg is named quadratic filter.

Hence, for almost ¢ € R,
H mo (27¢).
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Regularity of wavelet bases and ergodic theory

Organization of the talk

© Regularity of wavelet bases and ergodic theory
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Regularity of wavelet bases and ergodic theory

* Let us fix arbitrarily o € R,, and consider

C*(R) = {¢ € L(R), ¢ Holder function of exponent o}
RYR) = {¢ € L"(R),x — (1 + |x|*)[$(x)| € L'(R)}
D(R) = {6 € L'(R), x — (1+ |x|*)|(x)| € L=(R)}

)= (R), ¢
)= (R),

CX(R) = {¢ € L}(R), ¢ Holder function of exponent o with compact support}

DY (R) = {¢ € L}(R), with compact support, x —> (1 + |x|*)|d(x)| € L=(R)}

One has
e For all € > 0, D*F1T¢(R) € R*(R) C C¥(R),

e C2(R) C D2(R).

e * We eventually make the remark that if (&) =2 hep(2¢ — k), with
kez

(hi)kez € F?(Z), then if the hy's are null except a finite number, then mq is
polynomial, and ¢ has compact support.
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Regularity of wavelet bases and ergodic theory

* If mg is smooth, 2m-periodic, one factorizes on this form

1+eIX

mo(x) = (5) p),

where N is the degree of the root m of myg.
Hence, for almost all £ € R,

‘2sin(§ N

2| = )

where 71 (§) = H Ip(2 ~4¢)|. One sets u(€) := |p(€)], and for all n € N,

n

un(€) = T u@*¢).

k=1
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Regularity of wavelet bases and ergodic theory

Choosing p being polynomial allowing to create wavelets bases with compact
supports is the Daubechies method.

(u(€))? = |p(€)|? can be expressed as a polynomial function P with variable
y = cosz(g), and the relation (2.4) becomes:

YPA=y)+ (1 -n"P(y) =1,
with P > 0 over [0, 1]. A solution is done by Py with degree inferior to N:

N—-1

Pu = ()

k=0

Q>

[m] = = =
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Regularity of wavelet bases and ergodic theory

Lemma 3.1

Let’s introduce the sequence (b,)nen defined for all n € N by

I
b, = sup 1°82Un(&)
EER n

The sequence (bp)nen is sub-additive and so converges to the limit

b= r|7r£f1 b, € RU{—o0}.

b is called critic exponent of the quadratic filter mg.

Theorem 3.1
o Ifa < N — b, then ¢ belongs to D%(R), R*~(R), and C*1(R).

o Assume that {¢(e — k), k € Z} is orthonormal and v compactly supported.
then if & > N — b then ¢ is not Holder with exponent c.
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Regularity of wavelet bases and ergodic theory

Theorem 3.2

If u is continuous, 2m-periodic, Lipschitz on 0, and such that u(0) =1, then:

b = inf{a > 0, there exists M > 0 such that for all £ € R, m1(&) < M(1 + [£|¥)}

By 27-periodicity, we must study the ergodic product observing for all £ € R,

sup up(§) = sup un(2"€) = sup H up(25€).

£ER £€R geR

Precisely, with the transformation T : £ — 2 mod 27, studying the behavior of
the supremum of an ergodic product.

Now, let X be a metric compact space, and T : X — X a continuous
transformation. Let us consider Z the compact convex set of probability measures

on X invariant by T.
Let us fix g a real-valued continuous function on X. Let us denote for all u € Z,

u(g) = /X g(€)du().
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Regularity of wavelet bases and ergodic theory

n—1

As before, the sequence (sup Z g(ka)) . is sub-additive.
€eX 175 n>

Therefore, the sequence (5,(g))n>1 defined for all n > 1 by

inlg) = - sup > &(THE)

converges to a limit denoted 3(g).

Theorem 3.3

For all p € Z, B(g) > u(g)-
Moreover, there exists an ergodic measure g € Z such that 5(g) = po(g)
Finally, there exists xo € X satisfying

n—1

im =3 (%) = 5(g) = ole).
k=0
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Regularity of wavelet bases and ergodic theory

Now, consider the polynomial function Py from Daubechies wavelets, as the
example before, and its associated trigonometric polynomial function p.

Theorem 3.4

The ergodic probability measure o maximizing the integral of log, |p| is the
41

2
measure carried by the periodic points ?ﬂ and 3

Theorem 3.5

Let us denote a(N) the Hélder exponent of the function yy associated to the
polynomial function Py. Then we have the estimation:

] log,(3)
lim ——2 =1_— —=2~/
N—LTOO N 2
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Regularity of wavelet bases and ergodic theory
Finally, let's introduce the Meyer wavelets bases.

Definition 3.1

S(R), the Schwarz class is the space of infinitely differentiable functions f which
satisfy for all p, N € N,

sup (1 + \X|)N|f(p)(x)\ < +o0.
x€ER

Note that S(R) is invariant by the Fourier transformation.

We use the same notations as Proposition 2.4. Let m; € L?(5) be the function
defined for almost all £ € R as

my(€) = e S my(€ + 7).
Then, one has for almost all £ € R,

{ Imy ()] + m(€+m))> =1
mo(€)m(€) + mo(€ +m)m(€ +m) =0
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Regularity of wavelet bases and ergodic theory

Theorem 3.6 (Mallat and Meyer, 1985, 1986)
For almost all £ € R, we set
(26) = m(E)P(E).

(i) {(e — k), k € Z} is an orthonormal basis of W,.
(ii) {jk, jo k € Z} = {22(2 @ —k),j, k € Z} is an orthonormal basis of L2(R).

Theorem 3.7 (Meyer, 1985, 1986)

There exists a scaling function ¢ and a mother wavelet 1) which generate an
orthonormal basis of L2(R) and satisfy the following properties

(i) o, 9 € S(R).
(i) supp(p) C [f %’T, %’r], and for all £ € [f 2{, 27”], o) =1.
(iii) supp() C [ — &, —28] U [2%, 8], (4 is null on a neighborhood of 0.)

A wavelet basis generated by such o and v is called a Meyer wavelet basis.
Moreover, {1 x,j, k € Z}, is also an orthonormal basis of L?(R).
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Study of path’s roughness of stochastic processes

Organization of the talk

© Study of path's roughness of stochastic processes
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Study of path’s roughness of stochastic processes

Let's begin with an historical example, using Haar basis, and Brownian Motion
(BM). Now let {W(t): t € [0,1]} be a BM over [0,1]. It can be expressed as the
Wiener integral,

1
w(e) = [ toa(e)dw(s)
0
By expanding the function Lg,(s) in the Haar system, it follows that, in L*(R),

+o0 21 ' )
Lo q(s) = tlpy(s) + > > 277(Pt — k)22 (2s — k),

j=0 k=0

where 7 is the triangle function based on [0, 1] such that 7(3) = 3.

By isometry property of Wiener measure, one gets, with a.s uniform convergence,

2
W(t):t€0+ 2_%7’(2jt—k)€j’/<,
0

+
8
R

.
I
<}
==
Il

where g = W(1) ~ N(0,1), and &4 = 27 [5 9)(2/s — k)dW/(s) ~ N(0,1) if
j>0and0< k<2 —1.
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Study of path’s roughness of stochastic processes

(Q, A, P) is probability complete space. Let us now introduce Multifractional
Brownian Motion (MBM) Z = {Z(t), t € R}, by its harmonizable integral.
Consider H : R — (0, 1) a function such that H(R) C [H, H] C (0, 1), then one

defines for all t € R )
Z(t) =* -1
(t) = /]R W (6),

(Jaffard, Peltier and Roux harmonizable representation, 90s'), where W is the
orthogonally scattered Wiener measure (it can be considered as the Fourier
transform of the Wiener measure).

e Modulo a constant, if H is a constant function in (0, 1), then Z is the Fractional
Brownian Motion (FBM) with Hurst index H. And if H = %, we find the
Brownian Motion.

e FBM was introduced in 1940 by Kolmogorov and made popular in 60s’' by
Mandelbrot and Van Ness. It has turned out to be a powerful tool in modeling
and has been applied in many areas (Finance, Hydrology, Signals et Images
processing, Telecommunication, among other domains).
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Study of path’s roughness of stochastic processes

e Despite its usefulness, FBM model has some limitations, an important one of
them is that the roughness of its path remains everywhere the same: the
pointwise Holder exponent of the FBM Z is almost surely equal to H everywhere.
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R
,\‘W\
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— i ,
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"
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Here are two simulations of FBM, on the left with H = 0.3 on the right with
H=0.7.
e Making variable H is an idea in the 90s'.
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Study of path’s roughness of stochastic processes

e Simulation of MBM with H(t) = 0.1 4+ 0.06t (remark that there exists
simulation methods using wavelets for FBM and MBM).

06 T T T T T

04 Ih‘ﬂ =

i Mﬁﬂp‘f«. |
1 N‘WW | ‘/ﬂ\*»m N

-0.2 b

04} 4
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Study of path’s roughness of stochastic processes

Let the field X = {X(u, v),(u,v) € R x (0,1)} defined for all (u,v) € R x (0,1)

by lu£
(u,v) /( —Law(e). (4.5)

i€) "+2

X is called the field generating the MBM Z since
vVt e R, Z(t) = X(t, H(t)). (4.6)

Considering (4.6), properties of Z are strongly influenced by those of X.
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Study of path’s roughness of stochastic processes

e For all (j, k) € Z?, one sets ¢  := A%7k(§)dW(f).

By the definitions of W and 1@;{ since

~ 23 2437 +lg 2itlg
5UPP(¢j,k) C |:_ 3 ) 3 :| (_ 3 ) 3 )7

the sequence (&j «)(j,k)ezz is i.i.d N(0, 1).
e One denotes W the deterministic function defined for all (x,v) € R? by

V(x,v):= e d .
( wzw/ \n|v+z !

We have the "well-localization” in y uniformly in v restricted to any compact
interval of R for this function. More precisely, for all n,m € Z, for all L € N, for
all M > 0, one has

sup{(3+ IX|)E|oR0TW (x, V)|, (x,v) € R x [-M, M]} < +o0.
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Study of path’s roughness of stochastic processes

Theorem 4.1 (wavelet representation of Generator of MBM)

The generator of MBF X = {X(u,v), (u,v) € R x (0,1)} can be represented as

X(u,v) = Z 27MW(2u—k,v) —W(—k,v)]eix,
(,k)ez?

where the series is, on a event ) of probability 1, uniformly convergent in (u, v),
on each compact interval of R x (0,1).

Corollary 4.1

One sets, on £,

Z(t)= Y 27[W(2t—kH(t) - V(- k H(1))]ejk
(,k)ez?

Z is a continuous version of Z <= H is continuous.
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Study of path’s roughness of stochastic processes

With this modification and its properties, one obtains

Theorem 4.2
If H € CY(R), with v € (H,1) then

P(Vr € R, 05(7) = H(t)) =1,

where the random variable o5(7) denotes the pointwise Holder exponent on T of
Z.

The choice of the basis sz,k to build Z is crucial to get this statement.
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Study of path’s roughness of stochastic processes
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