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Résumé

En janvier 2022, j’ai pu lire le sujet de mémoire que proposait M. Ayache sur les

mouvements multifractionnaires. Cherchant un sujet mêlant analyse fonctionnelle et pro-

babilités, ayant suivi au premier semestre le cours de M.Tudor sur les processus et ayant

été passionné par des questionnements sur le mouvement brownien fractionnaire, le su-

jet a piqué de suite ma curiosité. Puis le mémoire s’est dirigé vers l’étude des séries de

Le Page, d’abord pour les lois symétriques stables, puis pour les processus symétriques

stables, afin de présenter une application : la démonstration de l’existence de versions

d’un processus réel stable harmonisable multifractionnaire vérifiant quelques hypothèses,

dont les trajectoires sont höldériennes.

Je remercie l’université de Lille pour l’accueil de l’étudiant spécial que je suis de par ma

situation, ainsi que M.Ayache pour sa disponibilité, son écoute.

Mots clé : Lois et processus symétriques stables, séries de Le Page, continuité höldérienne, mouvement

multifractionnaire.

1 Introduction

Ce mémoire commence d’abord par un questionnement que j’ai eu lors du cours que

j’ai suivi sur les processus stochastiques, concernant le mouvement brownien fractionnaire

et sa variation quadratique. Ayant croisé plusieurs démonstrations erronées de l’absence de

variation bornée (donc de variation quadratique), lorsque 0 < H <
1

2
, j’ai alors cherché un

véritable argument. M. Ayache m’a indiqué quelques pistes. J’en fais l’exposé.

Ensuite, on va s’intéresser à des extensions non gaussiennes du mouvement brownien

fractionnaire. Nous allons essentiellement étudier les processus symétriques α-stables, leurs

développements en séries de Le Page ainsi que leurs applications dans l’étude de la régularité

des trajectoires de certains de ces processus. Mon étude des lois et processus stables repose
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sur [2], le livre de Taqqu-Samorodnitsky, avec en parallèle le livre [3] de Feller, et celui de

Gnedenko [4]. Pour les séries de Le Page, tout d’abord encore [2], mais aussi l’article de

Marcus et Pisier [5], et le second article [7] de Kôno et Maejima. Enfin le dernier théorème

relatif à la continuité des trajectoires d’une version d’un processus réel hamonisable stable

multifractionnaire est l’aboutissement d’une synthèse de l’étude des deux articles de Maejima

[6], et [7], de l’article de Dozzi-Chevchenko [8], et de la thèse de Boutard, deuxième chapitre

[9].

Nous allons passer en revue plusieurs théorèmes et rappels qui seront utiles pour ce

mémoire. Rappelons tout d’abord un théorème de Paul Lévy :

Théorème 1.1 (Paul Lévy) Soit (Xn)n≤1 une suite de variables aléatoires réelles indépendantes

sur le même espace probabilisé (Ω,F ,P), alors les convergences P-presque sûre, en probabilité

et en loi de la série
∑
n≥1

Xn sont équivalentes.

Notation 1.2 Soit E un espace topologique muni de sa tribu borélienne Bor(E).

Soient T = N, ou T = [0, a], où a est réel positif, ou encore T = [0,+∞[.

Nous notons T (N∗) l’ensemble des parties finies d’éléments appartenant à T.

Soient I, J ∈ T (N∗), tels que J ⊂ I.

Notons φI,J :

{
EI → EJ

(xi)i∈I 7→ (xj)j∈J
, la projection canonique.

Supposons donnée une famille de probabilités (µI)I∈T (N∗) , où µI est une probabilité sur l’espace(
EI ,Bor

(
EI
))
.

Nous notons φI,J(µI) la loi marginale de µI sur l’espace EJ .

Définition 1.3 Avec les notations précédentes, on dit que la famille de probabilités (µI)I∈T (N∗)

est cohérente si pour tous I, J ∈ T (N∗), tels que J ⊂ I, on a : φI,J(µI) = µJ .

Nous rappelons le théorème de consistance de Kolmogorov :

Théorème 1.4 (Théorème de consistance de Kolmogorov) Soit E un espace polonais

muni de sa tribu borélienne Bor(E).

Soient T un ensemble non vide quelconque (indénombrable, c’est le cas intéressant).

Soit (µI)I∈T (N∗) une famille cohérente de probabilités sur les ensembles EI , pour tout I ap-

partenant à T (N∗).

Alors il existe un processus X = (Xt)t∈T sur l’espace probabilisé (Ω,A, (At)t∈T ,P), pour

lequel (E,Bor(E)) est l’espace de ses états, les µI sont ses lois fini-dimensionnelles, et où

Ω = ET ,A = σ ({Xt, t ∈ T}) , et (At)t∈T est sa filtration naturelle de X.

De plus, sur cet espace probabilisé, la probabilité P est unique.
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Nous ferons appel dans ce mémoire le corollaire du théorème de consistance de Kolmogorov,

réservés au cas d’un processus gaussien :

Corollaire 1.5 (Existence de processus gaussiens) Soient T = N, ou T = [0, a], où a

est un réel strictement positif, ou encore T = [0,+∞[.

Et soient m : T → R, et Γ : T 2 → R deux fonctions numériques telles que pour tout entier

n ≥ 1, et pour tout sous-ensemble I = {t1, · · · , tn} ⊂ T, la matrice ΓI = [Γ(ti, tj)]1≤i,j≤n
soit de type positif (on dit alors que la fonction Γ est de type positif).

Alors il existe un processus gaussien réel (Xt)t∈T unique à équivalence près, tel que pour

tout I = {t1, · · · , tn} ⊂ T, le vecteur XI = (Xt1 , · · · , Xtn) est de loi Nn (mI ,ΓI), avec

mI = (m(t1), · · · ,m(tn)) .

Preuve du corollaire 1.5

D’après le Théorème 1.4 de consistance de Kolmogorov, il suffit de montrer que la famille des

lois
(
Ncard(I) (mI ,ΓI)

)
I∈T (N∗)

est cohérente.

Soit I = {t1, · · · , tn} ⊂ T, et soit J une partie de I, notons d le cardinal de J . Et soient µJ

et µI les lois respectivement sur Rd et Rn correspondantes.

Alors, µ̂I désignant la fonction caractéristique du vecteur XI , pour tout u appartenant à Rn :

µ̂I(u) = exp (i 〈mI , u〉I) exp

(
−1

2
〈u,ΓI(u)〉I

)
.

(De même en remplaçant I par J, < . , . >J désignant par exemple le produit scalaire sur

Rd)

Notons ̂φI,J(µI) la fonction caractéristique de la loi marginale φI,J(µI) de µI sur Rd, alors

pour tout (uj)j∈{1, ··· ,d} ∈ Rd :

µ̂I,J [(uj)j∈J ] = µ̂I (ũ) , où : ũ ∈ Rn tel que : ũi =

{
ui, si i ∈ J

0, si i ∈ I/J
.

Donc, si v désigne le vecteur de Rd égal à (uj)j∈J :

µ̂I,J(v) = exp (i 〈mJ , ũ〉I) exp

(
−1

2
〈ũ,ΓI(u)〉I

)
= exp (i 〈mJ , v〉J) exp

(
−1

2
〈v,ΓJ(v)〉J

)
.

Donc, on a bien : µ̂I,J [(uj)j∈J ] = µ̂J [(uj)j∈J ] . d’où le résultat. �
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Rappelons à présent le critère de continuité de Kolmogorov :

Théorème 1.6 (Continuité de Kolmogorov) Soient T = N, ou T = [0, a], où a est un

réel strictement positif, ou encore T = [0,+∞[. Et soit X = (Xt)t∈T un processus à valeurs

dans Rd.

Supposons qu’il existe trois réels strictement positifs p, β, c tels que :

∀ s, t ∈ T : E [|Xt −Xs|p] ≤ c|t− s|1+β.

Alors il existe une version X̃ de X à trajectoires continues.

De plus, sur tout compact [0, b] ⊂ T, où b > 0, les trajectoires de X̃ sont γ-höldériennes, pour

tout γ appartenant à

]
0,
β

p

[
:

∀ ω ∈ Ω,∃Kω > 0 | ∀s, t ∈ [0, b] :
∣∣∣X̃t(ω)− X̃s(ω)

∣∣∣ ≤ Kω|t− s|γ .

Et voici un version dans le cas d’un processus gaussien centré :

Corollaire 1.7 (Continuité de Kolmogorov-Čentsov) Soit (Xt)t≥0 un processus gaus-

sien centré et soit a > 0.

Supposons qu’il existe des constantes c, η strictement positives telles que :

∀ s, t ∈ [0, a] : E
[
(Xt −Xs)

2
]
≤ c|t− s|η.

Alors, pour tout γ appartenant à
]
0,
η

2

[
, il existe une version de (Xt)t≥0, notée (X̃t)t≥0 ayant

ses trajectoires γ-höldériennes sur [0; a].

Preuve du corollaire 1.7 : Soient 0 ≤ s < t ≤ a, alors Xt − Xs suit la même loi que√
E [(Xt −Xs)]

2] Z, où Z suit la loi N (0, 1). Dès lors, pour tout p ≥ 1 :

E [|Xt −Xs|p] =
{
E
[
(Xt −Xs)

2
]} p

2 E(|Z|p)

≤ C
p
2 E(|Z|p) |t− s|

ηp
2 .

Le Théorème 1.6 de continuité de Kolmogorov s’applique : pour tout γ appartenant à l’in-

tervalle

]
0,

1

p
×
(ηp

2
− 1
)[

=

]
0,
η

2
− 1

p

[
, (Xt)t≥0 admet une modification (X̃t)t≥0 dont les

trajectoires sont γ-höldériennes sur [0, a]. Faisant alors tendre p vers +∞, on obtient le

résultat annoncé. �
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Enfin voici un lemme explicitant des intégrales que nous rencontrerons, sur les lois gamma :

Lemme 1.8 Pour tout α appartenant à ]0, 1[, et pour tout λ strictement positif :

i) ∫ +∞

0

1− e−λu

u1+α
du =

λα

α
Γ(1− α).

ii) ∫ +∞

0

e(−λ+i)x − 1

xα+1
dx =

−λ+ i

α
× Γ(1− α)

λ1−α ψ(1),

où ψ désigne la fonction caractéristisque de la loi γ(1−α, λ), soit : ψ(t) =
λ1−α

(λ− it)1−α .

Preuve du lemme 1.8 :

i) Tout d’abord, à l’aide d’une intégration par parties, nous avons :∫ +∞

0

1− e−λu

u1+α
du =

[
1− e−λu

−αuα

]+∞

0

+
λ

α

∫ +∞

0

e−λu

uα
du =

λ

α

∫ +∞

0

e−λu

uα
du, (1.1)

puisque :

a) α ∈]0, 1[, donc
1− e−λu

−αuα
∼

u→0+
−λ
α
u1−α −−−−→

u→0+
0.

b) Comme α > 0, lim
u→+∞

1− e−λu

uα
= 0.

Considérons à présent la loi gamma de paramètres 1− α et λ, alors :∫ +∞

0

λ1−α

Γ(1− α)
e−λuu−αdu = 1, d’où :

∫ +∞

0

e−λu

xα
du =

Γ(1− α)

λ1−α . (1.2)

Ainsi grâce à (1.2), (1.1) devient :

λα =
α

Γ(1− α)

∫ +∞

0

1− e−λu

u1+α
du.

ii) La calcul est analogue à (i) :

Iλ =
−λ+ i

α

∫ +∞

0

e(−λ+i)x

xα
dx =

−λ+ i

α

∫ +∞

0
e−λxx(1−α)−1eixdx

=
−λ+ i

α
× Γ(1− α)

λ1−α ψ(1),

�
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Voici une première application de ce lemme, nous allons rencontrer une constante cα dans

tout le mémoire, je souhaitais l’expliciter :

Proposition 1.9 Soit le réel cα =

[∫ +∞

0

sin(x)

xα
dx

]−1

, pour tout α dans ]0, 2]. Alors :

cα =


1− α

Γ(2− α) cos
(πα

2

) , si α 6= 1

2

π
, si α = 1

. (1.3)

Preuve de la proposition 1.9 : Nous allons calculer l’intégrale :

∫ +∞

0

sin(x)

xα
dx.

— Lorsque α = 1, on reconnâıt l’intégrale de Dirichlet :

∫ +∞

0

sin(x)

x
dx =

π

2
.

— Soit 0 < β < 1, et soit λ > 0.

Considérons Iλ =

∫ +∞

0

e(−λ+i)x − 1

xβ+1
dx. D’après le Lemme 1.8 (ii), nous avons :

Iλ =
−λ+ i

β
× Γ(1− β)

λ1−β ψ(1), (1.4)

où ψ désigne la fonction caractéristisque de la loi γ(1−β, λ), soit : ψ(t) =
λ1−β

(λ− it)1−β .

Dès lors, (1.4) devient :

Iλ = −(λ− i)β

β
Γ(1− β). (1.5)

Nous avons : λ− i =
√
λ2 + 1 eiθλ où θλ est la mesure dans ]− π, π] de l’argument de

λ− i.
Nous avons : tan(θλ) = − 1

λ
−−−−→
λ→0+

−∞, donc θλ −−−−→
λ→0+

−π
2
.

Dès lors, en reprenant à (1.5) :

Iλ = −Γ(1− β)

β

(
λ2 + 1

)β
2 eiθλβ −−−−→

λ→0+
−Γ(1− β)

β
e−i

π
2
β. (1.6)

D’autre part, d’après le critère de convergence de Dirichlet-Abel, puisque la fonction :

x 7→ e−λx décroit vers 0+, quand x tend vers +∞, et comme l’intégrale :

∫ +∞

0

sin(x)

xβ+1
dx

converge :

Im(Iλ) =

∫ +∞

0

e−λx sin(x)

xβ+1
dx −−−−→

λ→0+

∫ +∞

0

sin(x)

xβ+1
dx (1.7)
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Alors, en identifiant les parties imaginaires dans (1.6) et (1.7), nous avons :∫ +∞

0

sin(x)

xβ+1
dx =

Γ(1− β)

β
sin
(π

2
β
)

(1.8)

De cette situation, si nous considérons à présent 1 < α < 2, alors β = α − 1 ∈ ]0, 1[,

nous avons, grâce à (1.8) :∫ +∞

0

sin(x)

xα
dx =

∫ +∞

0

sin(x)

xβ+1
dx =

Γ(1− β)

β
sin
(π

2
β
)

=
Γ(2− α)

1− α
cos
(π

2
α
)
,

parce que : sin
[π

2
(α− 1)

]
= − sin

(π
2
− π

2
α
)

= − cos
(π

2
α
)
.

— Pour le cas 0 < α < 1, considérons cette fois la partie réelle de Iλ. On identifie α à β.

Re(Iλ) =

∫ +∞

0

e−λx cos(x)− 1

xβ+1
dx

Le relation (1.6), nous dit que :

Re(Iλ) −−−−→
λ→0+

−Γ(1− β)

β
cos
(π

2
β
)

(1.9)

Or, par intégration par parties :∫ +∞

0

e−λx cos(x)− 1

xβ+1
dx

=

[
− 1

β

e−λx cos(x)− 1

xβ

]+∞

0

− 1

β

[∫ +∞

0

λe−λx cos(x) + e−λx sin(x)

xβ
dx

]
=− 1

β

∫ +∞

0

λe−λx cos(x)

xβ
dx− 1

β

∫ +∞

0

e−λx sin(x)

xβ
dx,

car comme 0 < β < 1 :

e−λx cos(x)− 1

xβ
= λx1−β + o(x1−β) −−−−→

x→+∞
0, et

cos(x)

xβ exp(λx)
− 1

xβ
−−−−→
x→+∞

0.

Le critère de convergence de Dirichlet-Abel s’applique, puisque e−λx décroit vers 0+ :∫ +∞

0

λe−λx cos(x)

xβ
dx −−−−→

λ→0+
0.

Ainsi :

Re(Iλ) −−−−→
λ→0+

− 1

β

∫ +∞

0

sin(x)

xβ
dx. (1.10)

En identifiant les limites dans (1.9) et (1.10), nous avons donc, comme 0 < β < 1 :∫ +∞

0

sin(x)

xβ
dx = Γ(1− β) cos

(π
2
β
)

=
Γ(2− β)

1− β
cos
(π

2
β
)
.

�
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2 Etude du mouvement Brownien fractionnaire

2.1 Une première caractérisation

Proposition 2.1 Soit H > 0. Il existe un processus gaussien centré (BH(t))t≥0 admettant

comme fonction de covariance, pour tout s, t réels positifs :

ΓH(s, t) =
1

2

(
s2H + t2H − |t− s|2H

)
, (2.1)

si et seulement si 0 < H ≤ 1.

Preuve de la proposition 2.1 : (inspirée du livre de Nourdin [1])

Il s’agit de montrer que ΓH est de type positif si et seulement si 0 < H ≤ 1.

— Si H > 1 : Soient t1 = 1, t2 = 2, a1 = −2, a2 = 1, alors :

a2
1 ΓH(t1, t1)+2 a1a2 ΓH(t1, t2) + a2

2 Γ(t2, t2)

= 4 t2H1 − 2
(
t2H1 + t2H2 − |t1 − t2|2H

)
+ t22

= 4− 2(1 + 22H − 1) + 22H = 4− 22H < 0,

car H > 1. Donc ΓH ne peut être de type positif.

— Si H = 1 : ΓH(s, t) =
1

2
(s2 + t2 − (t− s)2) = st, alors :

∀ d ≥ 1, ∀ t1, · · · , td ≥ 0, ∀ a1, · · · , ad ∈ R :

∑
1≤k,l≤d

akalΓ1(tk, tl) =
∑

1≤k,l≤d
aktkaltl =

(
d∑

k=1

aktk

)2

≥ 0.

Donc Γ1 est bien de type positif.

— Si 0 < H < 1 : Faisons usage du Lemme 1.8, (i) avec λ = x2 et α = H. A l’aide d’un

changement de variable u = v2, nous obtenons :

x2H =
H

Γ(1−H)

∫ +∞

0

1− e−x2u

u1+H
du =

H

Γ(1−H)

∫ +∞

0

1− e−x2v2

v2(1+H)
× 2v dv

=
2H

Γ(1−H)

∫ +∞

0

1− e−x2v2

v1+2H
dv.

(2.2)

Appliquant cette dernière relation à s, t et |t− s| :

s2H + t2H − |t− s|2H =
2H

Γ(1−H)

∫ +∞

0

1− e−s2v2 − e−t2v2 + e−(t−s)2v2

v1+2H
dv (2.3)
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Or, (
1− e−s2v2

)(
1− e−t2v2

)
+ e−v

2t2
(
e−2v2ts − 1

)
e−v

2s2

= 1− e−s2v2 − e−t2v2 + e−v
2(t2+s2) + e−v

2(t2−2st+s2) − e−v2(t2+s2)

= 1− e−t2v2 − e−s2v2 − e−v2(t−s)2 .

Dès lors, en remplaçant dans (2.3) :

s2H + t2H − |t− s|2H =
2H

Γ(1−H)

∫ +∞

0

(
1− e−v2t2

)(
1− e−v2s2

)
v1+2H

dv

+
2H

Γ(1−H)

∫ +∞

0

e−v
2t2
(
e2v2ts − 1

)
e−v

2s2

v1+2H
dv

=
2H

Γ(1−H)

∫ +∞

0

(
1− e−v2t2

)(
1− e−v2s2

)
v1+2H

dv

+
2H

Γ(1−H)
×

+∞∑
n=1

2n

n!

∫ +∞

0

(vt)ne−v
2t2(vs)ne−v

2s2

v1+2H
dv.

(2.4)

Dès lors, pour tout entier d ≥ 1, pour tous t1, · · · , td réels positifs ou nuls, et pour

tous réels a1, · · · , ad, en appliquant cette dernière relation (2.4) :

∑
1≤k,l≤d

ΓH(tk, tl)akal =
H

Γ(1−H)

∫ +∞

0

1

v1+2H
×

 ∑
1≤k,l≤d

(
1− e−v2t2k

)(
1− e−v2t2l

)
akal

dv

+
H

Γ(1−H)
×

+∞∑
n=1

2n

n!

∫ +∞

0

∑
1≤k,l≤d

[
ak(vtk)

ne−v
2t2k

] [
al(vtl)

ne−v
2t2l

]
v1+2H

dv.

=
H

Γ(1−H)

∫ +∞

0

[
d∑

k=1

(
1− e−v2t2k

)
ak

]2

v1+2H
dv

+
H

Γ(1−H)
×

+∞∑
n=1

2n

n!

∫ +∞

0

[
d∑

k=1

ak(vtk)
ne−v

2t2k

]2

v1+2H
dv ≥ 0.

D’où le résultat.

Le Corollaire 1.5 nous dit donc qu’il existe alors un processus gaussien (unique à équivalence

près) dont la fonction de covariance est ΓH , pour 0 < H ≤ 1.

�
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Définition 2.2 Pour 0 < H ≤ 1 le processus gaussien (BH(t))t≥0 ainsi créé est appelé

mouvement brownien fractionnaire d’indice de Hurst H.

Remarque 2.3 Lorsque H =
1

2
on retrouve le mouvement brownien. En effet, pour s, t

réels positifs :

Γ 1
2
(s, t) =

1

2
(s+ t− |t− s|) = min(t, s),

qui est la fonction de covariance du mouvement brownien.

2.2 Ses propriétés

Propriétés 2.4 Considérons le mouvement brownien fractionnaire (BH(t))t≥0, pour

0 < H ≤ 1. Alors :

i) (BH(t))t≥0 est auto-similaire :

∀ c > 0 : (c−HBH(ct))t≥0
L
= (BH(t))t≥0. (2.5)

(égalité en termes de loi de processus).

ii) (BH(t))t≥0 est un processus à accroissements stationnaires : pour tout h ≥ 0 :

(BH(t+ h)−BH(h))t≥0 est encore le mouvement brownien fractionnaire d’indice H.

(2.6)

iii) (BH(t))t≥0 admet une modification dont les trajectoires sont δ-höldériennes sur tout

intervalle compact, pour tout δ appartenant à ]0;H[. Mais les trajectoires du mouve-

ment brownien fractionnaire sont presque sûrement nulle part dérivables.

iv) Variation quadratique : pour tout t > 0 :

〈BH〉t =


0, si H >

1

2

t, si H =
1

2

+∞, si H <
1

2

. (2.7)

Preuve des propriétés 2.4, (i), (ii) et (iii) :

i) Pour un réel c > 0 fixé, (c−HBH(ct))t≥0 est encore un processus gaussien centré et

11



pour tous s, t ≥ 0 :

Cov
(
c−HBH(ct), c−HBH(cs)

)
= c−2HCov (BH(ct), BH(cs))

=
c−2H

2

[
(ct)2H + (cs)2H − |ct− cs|2H

]
=
c−2H × c2H

2

[
t2H + s2H − |t− s|2H

]
= Cov (BH(t), BH(s)) .

D’où le résultat.

ii) Il faut prouver que pour tout h > 0, (BH(t+ h)−BH(h))t≥0 est aussi le mouvement

brownien fractionnaire.

C’est encore un processus gaussien centré, et pour tous t, s ≥ 0 :

Cov [BH(t+ h)−BH(h), BH(s+ h)−BH(h)]

= E [(BH(t+ h)−BH(h))(BH(s+ h)−BH(h))]

= E (BH(t+ h), BH(s+ h))− E (BH(t+ h), BH(h))

− E (BH(h), BH(s+ h)) + E (BH(h), BH(h))

= Cov [BH(t+ h), BH(s+ h)]− Cov [BH(t+ h), BH(h)]

− Cov [BH(h), BH(s+ h)] + Cov [BH(h), BH(h)]

=
1

2

[
(t+ h)2H + (s+ h)2H − |t− s|2H

]
− 1

2

[
(t+ h)2H + h2H − t2H

]
− 1

2

[
(s+ h)2H + h2H − s2H

]
+

1

2

[
h2H + h2H

]
=

1

2

(
t2H + s2H − |t− s|2H

)
= Cov [BH(t), BH(s)] ,

d’où le résultat.

iii) Nous avons pour tous t, s réels positifs :

E
[
(BH(t)−BH(s))2

]
= ΓH(t, t)− 2 ΓH(s, t) + ΓH(s, s)

= t2H + s2H − 2× 1

2

(
t2H + s2H − |t− s|2H

)
= |t− s|2H .

(2.8)

Grâce à la relation (2.8), le Corollaire 1.7 (continuité de Kolmogorov-Čentsov) s’ap-

plique pour γ = 2H, et l’on a la continuité höldérienne annoncée.

Néanmoins nous n’avons pas la dérivabilité des trajectoires.

En effet, tout d’abord pour t, h positifs, BH(t+ h)−BH(t) suit la loi N (0, t2H).

Donc la variable ZH égale à
BH(t+ h)−BH(t)

hH
suit la loi N (0, 1).

12



Nous allons démontrer que le taux de variation
BH(t+ h)−BH(t)

h
diverge en proba-

bilité vers +∞, quand h tend vers 0.

Soit M > 0, nous avons :

P

(∣∣∣∣BH(t+ h)−BH(t)

h

∣∣∣∣ > M

)
= P

(
h1−H

∣∣∣∣BH(t+ h)−BH(t)

h

∣∣∣∣ > Mh1−H
)

= P

(∣∣∣∣BH(t+ h)−BH(t)

hH

∣∣∣∣ > Mh1−H
)

= P
(
|ZH | > Mh1−H) =

∫
{|x|>Mh1−H}

e−
x2

2

√
2π

dx.

(2.9)

Or, lim
h→0+

h1−H = 0, car H ∈]0, 1[, donc, par convergence monotone :

∫
{|x|>Mh1−H}

e−
x2

2

√
2π

dx −−−−→
h→0+

∫
R

e−
x2

2

√
2π

dx = 1.

Ainsi (2.9) nous donne, pour tout M > 0 : P

(∣∣∣∣BH(t+ h)−BH(t)

h

∣∣∣∣ > M

)
−−−−→
h→0+

1.

D’où le résultat.

�

Preuve de la propriété 2.4, (iv) pour
1

2
≤ H ≤ 1 :

Soit ∆ = (t0, · · · , tn), où n ≥ 1, et 0 = t0 < t1 < · · · < tn−1 < tn = t. Et notons

∆ = max
0≤k≤n−1

tk+1 − tk.

Alors, en désignant par T∆ la somme
n−1∑
k=0

(BH(tk+1)−BH(tk))
2 :

E [T∆] =
n−1∑
k=0

E
[
(BH(tk + 1)−BH(tk))

2
]

=

n−1∑
k=0

|tk+1 − tk|2HE(Z2)

=
n−1∑
k=0

|tk+1 − tk|2H ≤ |∆|2H−1
n−1∑
k=0

(tk+1 − tk) = |∆|2H−1t.

(2.10)

Dès lors, lorsque
1

2
< H ≤ 1, lim

|∆|→0+
|∆|2H−1 = 0, et la relation (2.10) offre une convergence

dans L1(Ω) vers 0 de la variation quadratique.

Dans le cas H =
1

2
, nous avons à faire au mouvement brownien, nous allons prouver la

convergence dans L2(Ω) de T∆ vers t.
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Nous avons pour k dans {0, · · · , n − 1}} : B 1
2
(tk+1) − B 1

2
(tk) =

√
tk+1 − tkZ, où Z suit la

loi N (0, 1). Donc :

‖T∆ − t‖2L2(Ω) =

n−1∑
k=0

Var
[
(tk+1 − tk)Z2

]
= 2

n−1∑
k=0

(tk+1 − tk)2 ≤ 2|∆|t |∆|→0−−−−→ 0.

�

Commentaire 2.5 C’est le dernier cas de la variation quadratique qui m’a longtemps in-

terpellé...J’ai croisé le raisonnement suivant.

En prenant la subdivision

(
kt

2n
, 0 ≤ k ≤ 2n

)
de l’intervalle [0, t], alors, si ∆n désigne l’en-

semble des subdivisions (t0, · · · , tn) de cardinal n de l’intervalle [0, t] :

lim sup
n→+∞

sup
(t0,··· ,tn)∈∆n

E

[
n−1∑
k=0

(BH(tk+1)−BH(tk))
2

]

≥ lim sup
n→+∞

E

[
2n−1∑
k=0

(
BH

(
t(k + 1)

2n

)
−BH

(
tk

2n

))2
]
.

Mais grâce à (2.6), alors la membre de droite devient :

E

[
2n−1∑
k=0

(
BH

(
t(k + 1)

2n

)
−BH

(
tk

2n

))2
]

=
2n−1∑
k=0

E

[(
BH

(
t(k + 1)

2n

)
−BH

(
kt

2n

))2
]

=
2n−1∑
k=0

(
t

2n

)2H

= t2H × 2n(1−2H).

Or, comme 1− 2H > 0, alors 2n(1−2H) diverge vers +∞.
Nous obtenons une divergence vers +∞ dans l’espace L1(Ω). Nous n’obtenons pas de diver-

gence en probabilité avec ce raisonnement.

La divergence vers +∞ était P-presque sûre en fait. Même plus, il y a divergence P-presque

sûre vers +∞ de la variation (ce qui impliquera alors celle de la variation quadratique par

l’inégalité de Cauchy-Schwarz). Grâce au lemme qui suit, la divergence en probabilité sera

vraie.

Lemme 2.6 Si une suite de variables aléatoires diverge P-presque sûrement vers +∞, alors

cette suite diverge en probabilité vers +∞.
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Preuve du lemme 2.6 : Ceci se traduit par :

∃ Ω′ ∈ F | P(Ω′) = 1, et ∀M > 0,∀ω ∈ Ω′,∃N ≥ 1 | ∀n ≥ N : |Xn(ω)| > M.

Ce qui donne, pour tout M > 0 :

1 = P

[
lim sup
n→+∞

{|Xn| > M}
]

= P

 ⋃
N≥1

⋂
n≥N
{|Xn| > M}

 = lim ↑
N→+∞

P

 ⋂
n≥N
{|Xn| > M}

 .
Dès lors, si l’on note AN =

⋂
n≥N
{|Xn| > M}, alors : AN ⊂ {|XN | > M}.

Et alors : P(AN ) ≤ P(|XN | > M) ≤ 1.

Faisant tendre N vers +∞, nous en déduisons que lim
N→+∞

P(|XN | > M) = 1.

M étant arbitraire, nous avons bien que Xn diverge en probabilité vers +∞.
�

La démonstration de la divergence P-presque sûre a besoin d’un lemme sur les vecteurs

gaussiens :

Lemme 2.7 Soit

(
X1

X2

)
un vecteur gaussien centré dans R2.

Supposons que Var(X1) = Var(X2) = 1. Alors :

Cov(|X1|, |X2|) ≤ |Cov(X1, X2)|. (2.11)

Preuve du lemme 2.7 : Soit Γ =

(
1 a

a 1

)
sa matrice de covariance, et où :

Cov(X1, X2) = a ∈]−1; 1[. Soit ε1, ε2 deux variables aléatoires indépendantes suivant N (0, 1).

Alors : (
X1

X2

)
L
=


√

1 + a

2
ε1 +

√
1− a

2
ε2√

1 + a

2
ε1 −

√
1− a

2
ε2

 . (2.12)

En effet, pour tout (x, y) dans R2, d’une part :

E {exp[i(xX1 + yX2)]} = exp

[
−1

2

(
x y

)
× Γ×

(
x

y

)]
= exp

[
−1

2

(
x2 + 2axy + y2

)]
.
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D’autre part, comme ε1 ⊥⊥ ε2, et comme ε1, ε2 suivent la loi N (0, 1) :

E

{
exp

[
i

(
(x+ y)

√
1 + a

2
ε1 + (x− y)

√
1− a

2
ε2

)]}

= exp

[
−1 + a

4
(x+ y)2

]
× exp

[
−1− a

4
(x− y)2

]
= exp

[
−1

2

(
x2 + 2axy + y2

)]
.

Nous avons : |Cov(X1, X2)| = |a|, et E(|X1|) = E(|X2|) =
2√
2π
.

Et : Cov(|X1||X2|) = E(|X1X2|)− E(|X1|)E(|X2|).
Mais grâce à (2.12) :

E (|X1X2|) = E

[ ∣∣∣∣∣
(√

1 + a

2
ε1 +

√
1− a

2
ε2

)(√
1 + a

2
ε1 −

√
1− a

2
ε2

)∣∣∣∣∣
]

= E

[ ∣∣∣∣1 + a

2
ε2

1 −
1− a

2
ε2

2

∣∣∣∣ ] ≤ E(1 + a

2
ε2

1 +
1− a

2
ε2

2

)
.

(2.13)

Les variables ε1, ε2 étant indépendantes, et suivant la loi N (0, 1), alors :

E

(
1 + a

2
ε2

1 +
1− a

2
ε2

2

)
=

(
1 + a

2

)2

+

(
1− a

2

)2

=
1 + a2

2
. (2.14)

(2.13) et (2.14) donnent alors : E(|X1X2|) ≤
1 + a2

2
.

Et alors : Cov(|X1), |X2|) ≤
1 + a2

2
− 2

π
.

Une étude rapide de la fonction f définie sur [−1; 1] par f(a) =
1 + a2

2
− 2

π
− |a|, montre

qu’elle admet comme maximum :
1

2
− 2

π
< 0, ce qui prouve finalement (2.11).

�

Preuve de (2.7) dans le cas 0 < H < 1
2 : Nous allons donc prouver une divergence P-

presque sûre vers +∞ de la variation pour la subdivision :

(
k

2n
, 0 ≤ k ≤ 2n

)
de l’intervalle

[0, 1].

Considérons la variation :

Sn =

2n−1∑
k=0

∣∣∣∣BH (k + 1

2n

)
−BH

(
k

2n

)∣∣∣∣ .
D’après l’inégalité de Bienaymé-Tchebychev :

P

(∣∣∣∣ Sn
E(Sn)

− 1

∣∣∣∣ > 1

2

)
= P

(
|Sn − E(Sn)| > E(Sn)

2

)
≤ 4 Var(Sn)

[E(Sn)]2
. (2.15)
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En posant pour k dans {0 , · · · , 2n − 1} : ∆H,k = BH

(
k + 1

2n

)
−BH

(
k

2n

)
, nous avons :

Var(Sn) =

2n−1∑
k=0

Var (|∆H,k|) + 2
∑

0≤l<k≤2n−1

Cov (|∆H,k| , |∆H,l|) . (2.16)

(BH(t))t≥0 étant gaussien centré, grâce au Lemme 2.7 à la relation (2.5) puis à la relation

(2.6), d’une part :

Cov (|∆H,k| , |∆H,l|) ≤ |Cov (∆H,k,∆H,l)|

= 2−2nH |Cov [BH(k + 1)−BH(k), BH(l + 1)−BH(l)]|

= 2−2nH |Cov [BH(k − l + 1)−BH(k − l), BH(1)]|

(2.17)

Et d’autre part :

2n−1∑
k=0

Var (|∆H,k|) =

2n−1∑
k=0

2−2nHVar (|BH(1)|) = 2n−2nH × 2√
2π
. (2.18)

Combinant les relations (2.17) et (2.18), (2.16) devient :

Var(Sn) ≤ 2n−2nH × 2√
2π

+ 2
∑

0≤l<k≤2n−1

2−2nH |Cov [BH(k − l + 1)−BH(k − l), BH(1)]| .

(2.19)

Considérons pour x ≥ 0 :

g(x) = Cov (BH(x), BH(1)) = E(BH(x), BH(1)) =
1

2

(
x2H + 1− |x− 1|2H

)
.

Alors, pour tout entier naturel p non nul :

|g(p+ 1)− g(p)| = 1

2

∣∣(p+ 1)2H + 1− (p+ 1− 1)2H −
(
p2H + 1− (p− 1)2H

)∣∣
=

1

2

∣∣(p+ 1)2H + (p− 1)2H − 2p2H
∣∣

=
p2H

2

∣∣∣∣∣
(

1 +
1

p

)2H

+

(
1− 1

p

)2H

− 2

∣∣∣∣∣
=
p2H

2

∣∣∣∣1 +
2H

p
+
H(2H − 1)

p2
+ 1− 2H

p
+
H(2H − 1)

p2
− 2 + o

(
1

p2

)∣∣∣∣
= p2H−2 × [H(2H − 1) + o(1)],

qui est le terme d’une série convergente, puisque 0 < H <
1

2
.
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Donc, désignons par M la somme
+∞∑
p=0

|g(p+ 1)− g(p)|.

Ainsi le second terme dans (2.19) va être majoré, en effectuant le changement k − l = p :

2
∑

0≤l<k≤2n−1

2−2nH |f(k − l + 1)− f(k − l)| ≤ 2M × 2n × 2−2nH .

Et donc (2.16) devient :

Var(Sn) ≤ 2n−2nH ×
(

2√
2π

+ 2M

)
. (2.20)

Ensuite, de nouveau grâce à (2.5) puis à (2.6) :

[E(Sn)]2 =

[
2n−1∑
k=0

E

(∣∣∣∣BH (k + 1

2n

)
−BH

(
k

2n

)∣∣∣∣)
]2

= 2−2nH

[
2n−1∑
k=0

E (|BH(k + 1)−BH(k)|)

]2

= 2−2nH × (2nE(|BH(1)|))2 =
2

π
× 2−2nH+2n.

(2.21)

Combinant enfin (2.20) et (2.21), (2.15) devient :

P

(∣∣∣∣ Sn
E(Sn)

− 1

∣∣∣∣ > 1

2

)
≤ 4

Var(Sn)

[E(Sn)]2
≤ 4

(
2√
2π

+ 2M

)
2−n,

qui est le terme d’une série géométrique convergente.

Le lemme de Borel-Cantelli affirme que : P

(
lim sup
n→+∞

{∣∣∣∣ Sn
E(Sn)

− 1

∣∣∣∣ > 1

2

})
= 0.

Ou encore :

P

(
lim inf
n→+∞

{∣∣∣∣ Sn
E(Sn)

− 1

∣∣∣∣ ≤ 1

2

})
= 1.

Il existe alors un évènement Ω∗ appartenant à F de probabilité égale à 1 telle que :

∀ ω ∈ Ω∗,∃ N0(ω) ≥ 1 | ∀ n ≥ N0(ω) :

∣∣∣∣Sn(ω)

E(Sn)
− 1

∣∣∣∣ ≤ 1

2
.

Alors :
Sn(ω)

E(Sn)
≥ 1

2
, soit : Sn(ω) ≥ E(Sn)

2
. (2.22)

Mais comme 0 < H <
1

2
, (2.21) nous dit que E(Sn) diverge vers +∞. Donc, Sn diverge bien

vers +∞, P-presque sûrement.
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Enfin, notons la variation Tn =

2n−1∑
k=0

[
BH

(
k + 1

2n

)
−BH

(
k

2n

)]2

. La relation (2.22) et l’inégalité

de Cauchy-Schwarz donne, P-presque sûrement :

0 ≤ E(Sn)

2
≤ Sn ≤

√
2n
√
Tn.

L’égalité (2.21), donne alors :

Tn ≥
[E(Sn)]2

4× 2n
=

22n−2nH−n

2π
=

1

2π
× 2n(1−2H) −−−−−→

n→+∞
+∞,

car 0 < H <
1

2
. Ainsi nous avons la divergence P-presque sûre vers +∞ de Tn. Ce qui implique

que la variation quadratique du mouvement brownien fractionnaire lorsque 0 < H <
1

2
est

infinie. �

3 Les lois symétriques stables

Nous présentons dans cette section, une liste de définitions et de propriétés/théorèmes

sur les lois stables, que nous admettons. Nous préciserons les références.

3.1 Définition et propriétés élémentaires des lois stables, cas symétrique

3.1.1 Indice de stabilité

Définition 3.1 La loi d’une variable aléatoire réelle X est dite stable ou de loi stable si pour

tous réels strictement positifs a, b et toutes copies X1, X2 indépendantes de X, il existe deux

réels c et d tels que :

aX1 + bX2
L
= cX + d. (3.1)

On dit que X est strictement stable si pour tous réels a, b strictement positifs, et toutes copies

X1, X2 indépendantes de X, il existe un réel c tel que : aX1 + bX2
L
= cX.

Remarque 3.2

i) Si X a pour loi le dirac δx0 , pour un certain x0 ∈ R, alors X est stable. En effet,

pour deux copies indépendantes X1, X2 fixés de X et pour deux réels a, b strictement

positifs fixés, déterminons c et d tels que : aX1 + bX2
L
= cX + d.
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En passant par les fonctions caractéristiques, pour tout t réel :

φaX1+bX2(t) = φaX1(t)× φbX2(t)

= φX1(at)× φX2(bt) = eiatx0 × eibtx0

= ei(a+b)tx0 = φ(a+b)X(t).

Il en résulte que c = a + b, et d = 0. Ce cas est pathologique et n’a pas vraiment

d’intérêt.

ii) Nous rappelons qu’une variable aléatoire est symétrique (ou est de loi symétrique), si

les lois de X et de −X sont les mêmes.

Dès lors, une loi symétrique stable est strictement stable (réciproque fausse à cause

de (i) par exemple), car aX1 + bX2 est de même loi que (a− b)X, puisque X2 et −X2

sont de même loi. En effet, pour deux copies indépendantes X1, X2 de X et pour deux

réels a, b strictement positifs, soient c et d deux réels tels que : aX1 + bX2
L
= cX + d.

Supposons d non nul. Alors, par symétrie de X1, X2 et X, nous avons :

cX + d
L
= aX1 + bX2

L
= −(aX1 + bX2)

L
= −cX − d L= cX − d.

D’où : cX + d
L
= cX − d. Ce qui équivaut, pour les fonctions caractéristiques, pour

tout t réel :

φcX+d(t) = φcX−d(t)⇒ E
[
ei(cX+d)t

]
= E

[
ei(cX−d)t

]
⇒ eidtE

(
eict
)

= e−idtE
(
eict
)
.

Donc, pour tout t réel, e2idt = 1, en particulier, pour t =
π

2d
, nous obtenons : eiπ = 1,

ce qui est faux. D’où le résultat.

Lemme 3.3 Soit X une variable aléatoire réelle stable. Alors, si pour n ≥ 1, Sn désigne la

somme de n copies indépendantes de X nommées X1, · · · , Xn :

i) Il existe cn > 0, et un réel dn tels que Sn
L
= cnX + dn.

ii) ∃ ! α ∈ ]0, 2] | ∀n ≥ 1 : cn = n
1
α

Théorème 3.4 Soit X une variable aléatoire réelle. Alors elle est stable si et seulement si

la relation (3.1) de la Définition 3.1 a lieu, et alors :

∃ ! α ∈ ]0, 2] | ∀ a, b > 0 : cα = aα + bα. (3.2)

Corollaire 3.5 Une variable aléatoire réelle X est stable si et seulement s’il existe une suite

de réels strictement positifs (cn)n et une autre suite de réels (dn)n telles que pour tout entier

naturel non nul n, et toutes copies X1, · · · , Xn indépendantes de X : Sn =
n∑
k=1

Xk
L
= cnX+dn.
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Définition 3.6 Soit X une variable aléatoire réelle stable. L’indice α défini de manière

unique dans le Lemme 3.3 et le Théorème 3.4 est appelé indice de stabilité de X. X est alors

dite α-stable.

Remarque 3.7

— Dans la démonstration de tous ces résultats, nous démontrons qu’une loi normale est

2-stable, strictement 2-stable quand elle est centrée (car symétrique). D’autre part,

les lois 2-stables sont les seules lois stables à posséder un moment d’ordre 2 fini (car

appliquant la variance à la relation (3.2), nous obtenons : c2 = a2+b2, donc par unicité

de l’indice de stabilité : α = 2).

— Les démonstrations du Lemme 3.3, du Théorème 3.4, et du Corollaire 3.5 sont exposées

dans le livre de Feller [3].

3.1.2 Domaine d’attraction

Définition 3.8 Soit X une variable aléatoire réelle. On dit que la loi de X possède un

domaine d’attraction s’il existe une suite (Yn)n de variables aléatoires i.i.d, une suite (an)n

de réels strictement positifs et une suite (bn)n de réels telles que :

1

an

(
n∑
k=1

Yk − bn

)
L−−−−−→

n→+∞
X. (3.3)

On dit alors que la loi commune aux Yn appartient au domaine d’attraction de la loi de X.

Théorème 3.9 Une loi est stable si et seulement si elle possède un domaine d’attraction.

3.1.3 Fonction caractéristique d’une loi stable

Définition 3.10 Soient α, σ, β, µ tels que 0 < α ≤ 2, σ ≥ 0, et −1 ≤ β ≤ 1.

Notons Sα(σ, β, µ) la loi dont pour fonction caractéristique de toute variable X qui la suit

est, pour tout réel :

φX(t) =


exp

[
−σα|t|α

(
1− iβ sgn(t) tan

(πα
2

))
+ iµt

]
, si α 6= 1

exp

[
−σ|t|

(
1− 2

π
iβ sgn(t) log(|t|)

)
+ iµt

]
, si α = 1

. (3.4)

Théorème 3.11 Les lois Sα(σ, β, µ), où 0 < α ≤ 2, σ ≥ 0, et −1 ≤ β ≤ 1 sont exactement

toutes les lois stables.
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Remarque 3.12

— Les démonstrations des Théorèmes 3.9 et 3.11 se trouvent dans les livres de Feller [3],

et de Gnedenko [4].

— Nous retrouvons bien sur les gaussiennes (quand α = 2).

D’autre part, la loi Sα(σ, β, µ) est symétrique autour de µ si et seulement si β = 0.

Enfin, les lois symétriques stables (SαS) sont les lois Sα(σ, 0, 0) de fonction caractéristique :

φX(t) = exp [−σα|t|α] . (3.5)

3.1.4 Propriétés des lois stables

Propriétés 3.13 Soient X,X1, X2 deux variables aléatoires indépendantes suivant respecti-

vement les lois Sα(σ, β, µ), Sα(σ1, β1, µ1) et Sα(σ2, β2, µ2), alors :

i) X1 +X2 suit la loi Sα(σ3, β3, µ3) où :

σ3 = (σα1 + σα2 )
1
α , β3 =

β1σ
α
1 + β2σ

α
2

σα1 + σα2
, et : µ3 = µ1 + µ2.

ii) Pour tout réel a, X + a suit la loi Sα(σ, β, µ+ a).

iii) Pour tout réel a non nul :

a) Si α 6= 1, alors aX suit la loi Sα (|a|σ, sgn(a)β, aµ) .

b) Si α = 1, alors : aX suit la loi S1

(
|a|σ, sgn(a)β, aµ− 2

π
a (log(|a|)σβ)

)
.

iv) Si 0 < α < 2, alors X suit la loi Sα(σ, β, 0)⇐⇒ −X suit la loi Sα(σ,−β, 0).

v) X est symétrique par rapport à µ si et seulement si β = 0. Et elle est alors symétrique

si et seulement si µ = β = 0.

vi) Si α 6= 1, alors X est strictement stable si et seulement si µ = 0. Dès lors, si X suit

la loi Sα(σ, β, µ) alors X − µ est strictement stable.

v) Si α = 1, alors X est strictement stable si et seulement β = 0.

Propriétés 3.14 Soit X suivant la loi Sα(σ, β, µ), pour un certain α appartenant à ]0, 2[.

Rappelons la constante : cα =

(∫ +∞

0

sin(x)

xα
dx

)−1

. Alors :

i) lim
λ→+∞

λαP(X > λ) = cασ
α × 1+β

2 , et lim
λ→+∞

λαP(X < −λ) = cασ
α × 1−β

2 ,

ii) Dans le cas où α = 1, supposons que β = 0. Alors, pour tout p appartenant à ]0, α[, il

existe une constante cα,β(p) telle que :

(E (|X|p))
1
p = cα,β(p)σ.

Remarque 3.15 Les démonstrations des Propriétés 3.13 se trouvent dans le livre de Taqqu-

Samorodnitsky [2], et celles des Propriétés 3.14 dans Feller [3].
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3.1.5 Théorème limite

Définition 3.16

i) On dit qu’une fonction h définie sur R à valeurs dans R+ est à variation lente si elle

vérifie :

∀c > 0 : lim
x→−∞

h(cx)

h(x)
= lim

x→+∞

h(cx)

h(x)
= 1 (3.6)

ii) Le moment tronqué d’une variable aléatoire réelle X noté µX est la fonction définie

sur R+ par :

µX(x) =

∫ x

−x
t2dPX(t). (3.7)

Théorème 3.17 Soit X une variable aléatoire réelle non constante.

La loi de X appartient à un domaine d’attraction si et seulement si les deux conditions

suivantes sont réunies :

i) µX(x) ∼
x→+∞

x2−αh(x), où h est à variation lente.

ii) Soit α = 2, soit 0 < α < 2, et F désignant la fonction de répartition de X :

1− F (x)

1− F (x) + F (−x)
−−−−→
x→+∞

p, et :
F (−x)

1− F (x) + F (−x)
−−−−→
x→+∞

q, avec : p+ q = 1.

(3.8)

Théorème 3.18 La loi d’une variable aléatoire Y appartient au domaine d’attraction d’une

loi stable d’indice 0 < α < 2 si et seulement s’il existe c1, c2 ≥ 0, non toutes deux nulles,

deux fonctions ε1, ε2 sont deux fonctions numériques définie sur R tendant vers 0 en +∞, et

une fonction h à variation lente telles que :

FY (−x) ∼
x→+∞

c1 + ε1(x)

xα
h(x), et : 1− FY (x) ∼

x→+∞

c2 + ε2(x)

xα
h(x), (3.9)

Corollaire 3.19 La loi d’une variable aléatoire symétrique Y sans atome appartient au do-

maine d’attraction d’une loi stable symétrique d’indice 0 < α < 2 si et seulement s’il existe

c > 0, et une fonction h à variation lente telles que :

xαP(|Y | > x) ∼
x→+∞

(c+ o(1))h(x). (3.10)

Preuve du corollaire 3.19 : Grâce au théorème précédent, en posant c = c1 + c2 > 0,

comme X est symétrique, alors P(|Y | > x) = 1 − FY (x) + FY (−x) et les quantités étant

toutes positives, nous avons :

∀δ > 0, ∃M > 0 | ∀x > M :


|ε1(x)| < δ, |ε2(x)| < δ,

xαFY (−x) = [c1 + ε1(x)]h(x),

xα(1− FY (x)) = [c2 + ε2(x)]h(x).
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On en déduit que : xαP(|Y | > x) = [c+ ε1(x) + ε2(x)]h(x).

�

Il résulte du Théorème 3.9 le théorème suivant :

Théorème 3.20 (limite) Soit (Yn)n une suite de variables i.i.d, dont la loi appartient à un

domaine d’attraction, et soit α défini par le Théorème 3.17. Alors il existe un réel σ ≥ 0,

un réel β tel que −1 ≤ β ≤ 1, un réel µ, une suite de réels strictement positifs (an)n et une

autre de réels (bn)n telles que :

1

an

n∑
k=1

(Yk − bn)
L−−−−−→

n→+∞
X, où X est de loi Sα(σ, β, µ).

De plus, on a :

i) Si E(|Y1|) < +∞, alors bn = E(Y1) convient et alors avec ce choix µ = 0.

ii) Si la loi de Y1 est symétrique, alors β = 0.

iii) Si E(Y 2
1 ) < +∞, alors α = 2, et dans ce cas : 2σ2 = Var(Y1), X est de loi N (µ, 2σ2).

Remarque 3.21 Les démonstrations des Théorèmes 3.17, 3.18 et 3.20 se trouvent dans le

livre de Feller [3].

3.2 Caractérisations des processus de Poisson

Nous allons dans cette section présenter deux constructions d’un processus de Poisson. La

première à l’aide du Théorème 1.4 de consistance de Kolmogorov va nous permettre de définir

le processus de Poisson canonique. Et la seconde construction à l’aide la notion d’instants

d’arrivée nous permettra de montrer des propriétés qui nous seront utiles.

3.2.1 Construction à l’aide du théorème de consistance de Kolmogorov

Théorème 3.22 Soit λ > 0. Il existe un processus (unique à équivalence près) (Nt)t≥0 à

valeurs dans R, à accroissements indépendants et stationnaires tel que N0 = 0, et tel que

pour tous t et s positifs ou nuls tels que s < t, la variable aléatoire Nt − Ns suit la loi de

Poisson P(λ(t− s)).

Preuve du théorème 3.22 : Soit n un entier naturel non nul, et soient t1, t2, · · · , tn des

réels tels que : 0 < t1 < t2 < · · · < tn. Désignons par I l’ensemble {t1, · · · , tn}. Nous posons

t0 = 0.
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Alors, puisque la variable Ntk − Ntk−1
suit la loi de Poisson P(λ(tk − tk−1)) pour chaque k

appartenant à {1, · · · , n} et par indépendance des accroissements, la loi du vecteur aléatoire(
Nt1 , Nt2 −Nt1 , · · · , Ntn −Ntn−1

)
, est : P(λ(t1))⊗ P(λ(t2 − t1)) · · · ⊗ P(λ(tn − tn−1)).

Nous allons démontrer que la famille des lois fini-dimensionnelles est cohérente. La loi µI

désignant la loi du vecteur aléatoire : (Nt1 , · · · , Ntn), cette loi a pour fonction caractéristique

la fonction µ̂I telle que pour tous réels u1, · · · , un :

µ̂I(u1, · · · , un) =E
[
eiu1Nt1 × · · · × eiunNtn

]
=E

[
eiu1Nt1 × eiu2[(Nt2−Nt1 )+Nt1 ] × · · · × eiun[(Ntn−Ntn−1 )+···+(Nt2−Nt1 )+Nt1 ]

]
=E

ei
(

n∑
k=1

uk

)
Nt1 × e

i

(
n∑
k=2

uk

)
(Nt2−Nt1 )

× · · · × eiun(Ntn−Ntn−1 )


(3.11)

Or, si une variable aléatoire X suit la loi de Poisson P(α) pour α > 0, alors sa fonction

caractéristique est, pour tout t réel : µ̂(t) = exp
[
α
(
eit − 1

)]
.

Ainsi, puisque la variable Ntk − Nk−1 suit la loi de Poisson P(λ(tk − tk−1)) pour chaque k

appartenant à {1, · · · , n} et par indépendance des accroissements, la relation (3.11) devient :

µ̂I(u1, · · · , un) = E

ei
(

n∑
k=1

uk

)
Nt1

× E
ei

(
n∑
k=2

uk

)
(Nt2−Nt1 )

× · · · × E [eiun(Ntn−Ntn−1 )
]

= exp

λ(t1 − t0)×

ei
(

n∑
k=1

uk

)
− 1

× exp

λ(t2 − t1)×

ei
(

n∑
k=2

uk

)
− 1

× · · ·
× eλ(tn−tn−1)(eiun−1).

(3.12)

Soit maintenant J ⊂ I. La fonction caractéristique ̂φI,J(µI) de la loi marginale φI,J(µI) de

µI sur RJ est la fonction obtenue à partir de l’expression de µ̂I(u1, · · · , un) dans (3.12) en

remplaçant ui par 0 pour les entiers i tels que ti n’appartient pas à J. Il faut montrer que

cette fonction est égale à µ̂J .

L’ensemble J est de la forme : {tk1 , · · · , tkd} où 1 ≤ k1 < k2 < · · · < kd ≤ n, pour un entier

d ≥ 1.

Alors de manière analogue à la relation (3.12), µJ désignant la loi du vecteur aléatoire :

(Ntk1
, · · · , Ntkd

), la fonction caractéristique µ̂J est définie surRd pour tout w = (w1, · · · , wd)
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par :

µ̂J(w) = exp

λ(tk1 − t0)×

ei
(

d∑
j=1

wj

)
− 1


 exp

λ(tk2 − tk1)×

ei
(

d∑
j=2

wj

)
− 1


× · · ·

×eλ(tkd−tkd−1
)(eiwd−1).

Soit ũ l’élément de Rn tel que, pour tout i appartenant à {1, · · · , n} : ũi =

{
0, si i /∈ {k1, · · · , kd}

ui, si i ∈ {k1, · · · , kd}
Et soit v l’élément de Rd tel que v = (uk1 , · · · , ukd) .
Alors :

̂φI,J(µI)(v) = µ̂I(ũ)

= exp

λ(t1 − t0)×

ei
(

n∑
k=1

ũk

)
− 1

× exp

λ(t2 − t1)×

ei
(

n∑
k=2

ũk

)
− 1

× · · ·
× eλ(tn−tn−1)(eiũn−1).

(3.13)

Observons que si k1 > 0, alors chaque ũi est nul pour tout i appartenant à {1, · · · , k1 − 1}.
Mais aussi, si kd < n, alors chaque ũi est nul pour tout i appartenant à {kd + 1, · · · , n}.

Ainsi, les quatre sommes

n∑
k=1

ũk,

kd∑
k=k1

ũk,

d∑
j=1

ukj et enfin

d∑
j=1

vj sont égales.

Et de même plus généralement, pour p appartenant à {1, · · · , d} :

kd∑
k=kp

ũk =

d∑
j=p

ukj =

d∑
j=p

vj . (3.14)

Considérons, à présent le produit des k1 premiers facteurs définissant ̂φI,J(µI)(v) (relation

(3.13)) Nous avons, suite à ce qui précède, et en notant, pour tout réel x : T (x) = eix − 1 :

exp

[
λ(t1 − t0)T

(
n∑
k=1

ũk

)]
exp

[
λ(t2 − t1)T

(
n∑
k=2

ũk

)]
· · · exp

λ(tk1 − tk1−1)T

 n∑
k=k1

ũk


= exp

λ(t1 − t0)× T

 kd∑
k=k1

ũk

× · · · × exp

λ(tk1 − tk1−1)T

 kd∑
k=k1

ũk


= exp

λ [(t1 − t0) + (t2 − t1) + · · ·+ (tk1 − tk1−1)]

ei
(

kd∑
k=k1

ũk

)
− 1




= exp

λ (tk1 − t0)

ei
(

kd∑
k=k1

ũk

)
− 1



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De manière analogue, en considérant le produit des k1 +1-ème, k1 +2-ème,...,jusqu’au k2-ème

facteur présents dans le produit définissant ̂φI,J(µI)(v) (relation (3.13)), nous avons :

exp

λ(tk1+1 − tk1)× T

 n∑
k=k1+1

ũk

× · · · × exp

λ(tk2 − tk2−1)T

 n∑
k=k2

ũk


= exp

λ (tk2 − tk1)T

 kd∑
k=k2

ũk


Ainsi de suite, pour j appartenant à {2, · · · , d − 1} pour les produits des (kj + 1)-ème,

(kj + 2)-ème,..., jusqu’au kj+1-ème facteur présent dans le produit.

De sorte que, grâce aux égalités de sommes dans (3.14) :

̂φI,J(µI)(v)

= exp

λ (tk1 − t0)T

 kd∑
k=k1

ũk

 exp

λ (tk2 − tk1)T

 kd∑
k=k2

ũk

 · · · exp
[
λ
(
tkd − tkd−1

)
T (ũkd)

]

= exp

λ (tk1 − t0)T

 d∑
j=1

vj

 exp

λ (tk2 − tk1)T

 d∑
j=2

vj

 · · · exp
[
λ
(
tkd − tkd−1

)
T (vd)

]
=µ̂J(v).

(3.15)

La dernière relation (3.15) prouve que la famille (µI)I∈R(N∗)
+

est cohérente. Le Théorème 1.4

de consistance de Kolmogorov donne l’existence et l’unicité à équivalence près du processus de

cette proposition. Les accroissements de ce processus sont alors indépendants et stationnaires

par construction.

Définition 3.23 Soit λ > 0. Le processus (Nt)t≥0 construit dans le Théorème 3.22 est ap-

pelé : processus de Poisson canonique d’intensité λ.

Remarque 3.24 Cette caractérisation nous permet de démontrer le lemme de Ross qui

nous sera utile.

Lemme 3.25 (Ross, 1985) Soient (N1(t))t≥0, (N2(t))t≥0 deux processus de Poisson indépendants

d’intensités respectives λ1 > 0, λ2 > 0.

Si (N(t))t≥0 est le processus superposé (N1(t) +N2(t))t≥0, alors (N(t))t≥0 est aussi un pro-

cessus de Poisson d’intensité λ1 + λ2.
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Preuve du lemme 3.25 : Nous allons prouver les hypothèses du Théorème 3.22

Soit N(t) = N1(t) +N2(t) Et soient 0 ≤ t1 < t2 < ... < tn.

Alors : {
N1(t1), N1(t2)−N1(t1), · · · , N1(tn)−N1(tn−1) sont indépendantes,

N2(t1), N2(t2)−N2(t1), · · · , N2(tn)−N2(tn−1) sont indépendantes.

Mais comme (N1(t))t≥0 et (N2(t))t≥0 sont des processus indépendants alors également :{
N2(t1) est indépendante de : N1(t1), N1(t2)−N1(t1), · · · , N1(tn)−N1(tn−1),

N1(t1) est indépendante de : N2(t1), N2(t2)−N2(t1), · · · , N2(tn)−N2(tn−1).

Donc : N1(t1) +N2(t2) est indépendante de : N1(t2)−N1(t1), · · · , N1(tn)−N1(tn−1).

Puis de : N1(t2)−N2(t1), · · · , N2(tn)−N2(tn−1). Donc également de :

N1(t2) +N2(t2)− [N1(t1) +N2(t1)], · · · , N1(tn) +N2(tn)− [N1(tn−1) +N2(tn−1)]

Soit 1 ≤ i ≤ n−1, alors N1(ti+1)−N1(ti) est indépendante des variables : N1(tj+1)−N1(tj),

pour tout j appartenant à {1, · · · , n− 1} et différent d’i.

Et de même : N2(ti+1)−N2(ti) est indépendante des variables : N2(tj+1)−N2(tj), pour tout

j appartenant à {1, · · · , n− 1} et différent d’i.

Les processus (N1(t))t≥0 et (N2(t))t≥0 étant indépendants, alors :

N1(ti+1)−N1(ti) est indépendante des variables N2(tj+1)−N2(tj), pour tout j appartenant

à {1, · · · , n− 1}.
Et de même N2(ti+1)−N2(ti) est indépendante des variables N1(tj+1)−N1(tj), pour tout j

appartenant à {1, · · · , n− 1}.
Donc la variable :

N1(ti+1)−N1(ti) +N2(ti+1)−N2(ti) = [N1(ti+1) +N2(ti+1)]− [N1(ti) +N2(ti)]

est indépendante des variables : [N1(tj+1) +N2(tj+1)]− [N1(tj) +N2(tj)], pour tout j appar-

tenant à {1, · · · , n− 1} et différent d’i.

D’autre part : N1(ti+1)−N1(ti) et N2(ti+1)−N2(ti) suivent respectivement les lois de Poisson

P(λ1(ti+1 − ti)),P(λ2(ti+1 − ti)) et sont indépendantes.

Alors : [N1(ti+1) +N2(ti+1)]− [N1(ti) +N2(ti)] suit la loi P((λ1 + λ2)(ti+1 − ti)).
Donc, d’après le Théorème 3.22, (N(t))t≥0 est un processus de Poisson d’intensité λ1 + λ2.

�
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3.2.2 Construction à l’aide de la notion d’instants d’arrivée

Proposition 3.26 Soient a, b deux réels tels que a < b, et considérons la fonction dn définie

pour tout (x1, · · · , xn) appartenant à Rn par :

dn(x1, · · · , xn) =
n!

(b− a)n
1(a<x1<···<xn<b)(x1, . . . , xn). (3.16)

Alors, la fonction dn est une densité sur Rn par rapport à la mesure de Lebesgue sur Rn.

Preuve de la proposition 3.26 : Cette fonction est mesurable positive. Et nous avons,

grâce au théorème de Tonelli, pour tout (x1, · · · , xn) appartenant à Rn :∫
Rn
dn(x1, · · · , xn)dx1 · · · dxn =

n!

(b− a)n

∫ b

a

∫ b

x1

∫ b

x2

· · ·
∫ b

xn−1

dxndxn−1 · · · dx1

=
n!

(b− a)n

∫ b

a

∫ b

x1

∫ b

x2

· · ·
∫ b

xn−2

(b− xn−1)dxn−1 · · · dx1

=
n!

(b− a)n

∫ b

a

∫ b

x1

∫ b

x2

· · ·
∫ b

xn−3

1

2
(b− xn−2)dxn−2 · · · dx1

=
n!

(b− a)n

∫ b

a

∫ b

x1

∫ b

x2

· · ·
∫ b

xn−4

1

3!
(b− xn−3)2dxn−2 · · · dx1

= · · · = n!

(b− a)n

∫ b

a

1

(n− 1)!
(b− x1)n−1dx1 = 1.

�

Définition 3.27 Soit n un entier naturel non nul.

Et soient X1, · · · , Xn des variables aléatoires sur un même espace probabilisé (Ω,A,P).

Le vecteur aléatoire (X1, · · · , Xn) suit la loi de Dirichlet d’ordre n sur un intervalle [a, b],

que l’on note Dn([a, b]), si ce vecteur admet comme densité par rapport à la mesure de Le-

besgue sur Rn, la fonction dn définie dans la relation (3.16) de la Proposition 3.26.

Notons r la fonction rangement : r :

{
Rn −→ Rn

(x1, · · · , xn) 7→ (x(1), · · · , x(n))
, où les x(k) sont les

réels xk rangés dans l’ordre croissant. C’est-à-dire les réels définis par :{
{x1, · · · , xn} = {x(1), · · · , x(n)}

x(1) ≤ x(2) ≤ · · · ≤ x(n)

.

Nous allons présenter dans la proposition suivante un lien entre les lois uniformes et les lois

de Dirichlet.
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Proposition 3.28 Soient a et b deux réels tels que a < b. Et soient , pour un entier na-

turel non nul n, U1, · · · , Un des variables aléatoires réelles indépendantes identiquement

distribuées suivant toutes la loi uniforme U([a, b]). Considérons U(1), U(2), · · · , U(n) leur ar-

rangement par ordre croissant.

Ainsi nous avons : (U(1), · · · , U(n)) = r(U1, · · · , Un).

Alors le vecteur aléatoire
(
U(1), · · · , U(n)

)
suit la loi Dn([a, b]).

Preuve de la proposition 3.28 :

Soit An = {(x1, · · · , xn) ∈ Rn | x1 ≤ x2 ≤ · · · ≤ xn}.
Considérons Sn l’ensemble des permutations de l’ensemble {1, · · · , n}.

A chaque σ appartenant à Sn, on considère Rσ :

{
Rn −→ Rn

(x1, · · · , xn) 7→ (xσ(1), · · · , xσ(n))
.

Alors nous avons l’égalité :

Rn =
⋃
σ∈Sn

R−1
σ (An). (3.17)

Le vecteur aléatoire (U1, · · · , Un) a comme densité par rapport à la mesure de Lebesgue

n-dimensionnelle λn, la fonction fn qui à (x1, · · · , xn) appartenant à Rn associe :

fn(x1, · · · , xn) =
1

(b− a)n
1[a,b]n(x1, · · · , xn).

Soit maintenant une fonction g mesurable bornée sur Rn, on a alors, par le théorème de

transfert :

E
[
g
(
U(1), · · ·U(n)

)]
=

∫
Rn

(g ◦ r)(x1, · · · , xn)fn(x1, · · · , xn)dλn(x1, · · · , xn).

Notons x = (x1, · · · , xn), alors l’égalité (3.17) implique :

E
[
g
(
U(1), · · ·U(n)

)]
=
∑
σ∈Sn

∫
R−1
σ (An)

(g ◦ r)(x)fn(x)dλn(x)

=
∑
σ∈Sn

∫
Rn
1An (Rσ(x)) (g ◦ r)(x)fn(x)dλn(x).

Dans chaque intégrale :

∫
Rn
1An (Rσ(x)) (g ◦ r)(x)fn(x)dλn(x), on effectue alors le change-

ment de variable : y = Rσ(x), Rσ étant une isométrie, le jacobien est ±1, alors :

E
[
g
(
U(1), · · · , U(n)

)]
=
∑
σ∈Sn

∫
Rn
1An(y)(g ◦ r)

(
R−1
σ (y)

)
fn
(
R−1
σ (y)

)
dλn(y). (3.18)
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Or les fonctions g ◦ r et fn sont invariante par R−1
σ , alors les intégrales présentes dans (3.18)

sont indépendantes de la permutation σ choisie. Et donc :

E
[
g
(
U(1), · · · , U(n)

)]
= n!

∫
An

(g ◦ r)(y)fn(y)dλn(y). (3.19)

De la relation (3.19), et de l’expression de fn, la densité du vecteur aléatoire (U(1), · · · , U(n))

est, pour x = (x1, · · · , xn) ∈ Rn, égale à :

f(U(1), ··· ,U(n))(x) =
n!

(b− a)n
1(0≤x1≤x2≤···≤xn≤b)(x),

qui est bien la densité dn de la loi de Dirichlet Dn([a, b]). �

Voici à présent une proposition liant les lois gamma et les lois de Dirichlet.

Proposition 3.29 Soient, pour un entier naturel non nul n, les variables aléatoires e1, · · · , en
indépendantes identiquement distribuées suivant toute la loi exponentielle E(λ), pour un cer-

tain λ > 0. Et considérons la variable Γn égale à
n∑
k=1

ek.

Alors :

i) Γn suit la loi γ(n, λ).

ii) Pour tout t réel strictement positif, la loi du vecteur (Γ1, · · · ,Γn) sachant (Γn+1 = t)

est Dn([0, t]).

iii) Pour tout t réel positif ou nul, la loi du vecteur (Γ1, · · · ,Γn) sachant (Γn ≤ t ≤ Γn+1)

est Dn([0, t]).

Remarque 3.30 Les variables Γj sont appelés instants d’arrivée.

Preuve de la proposition 3.29 :

i) Soit f : Rn → R une fonction mesurable positive. Nous avons :

E [f (Γ1, · · · ,Γn)] = E [f(e1, e1 + e2, · · · , e1 + · · ·+ en)] .

Or les ek pour tout k appartenant à {1, · · · , n} étant indépendantes et identiquement

distribuées de loi E(λ), alors nous connaissons la densité ϕ du vecteur (e1, · · · , en),

qui est, pour tout x = (x1, · · · , xn) appartenant à Rn, égale à :

ϕ(x) = λne−λ(x1+x2+···+xn)1Rn+(x).
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Alors :

E [f (Γ1, · · · ,Γn)] = λn
∫
Rn+

f(x1, x1 +x2, · · · , x1 + · · ·+xn)e−λ(x1+···+xn)dx1 · · · dxn.

(3.20)

On effectue le changement de variable suivant :

t1 = x1,

t2 = x1 + x2,

· · · · · ·

tn = x1 + x2 + · · ·+ xn.

Nous avons alors : (x1, · · · , xn) ∈ Rn+ ⇐⇒ 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. La valeur absolue

du jacobien de ce changement est 1. La relation (3.20) devient :

E [f (Γ1, · · · ,Γn)] = λn
∫
Rn+

f(t1, t2, · · · , tn)e−λtn1(0≤t1≤···≤tn)(t1, · · · , tn)dt1 · · · dtn.

(3.21)

Ainsi changeant tn par t, la densité de gn de Γn est, grâce au théorème de Tonelli :

gn(t) =

∫
Rn−1

λne−λt1(0≤t1≤···≤tn−1≤t)(t1, · · · , tn−1)dt1 · · · dtn−1

= λne−λt1R+(t)

∫ t

0

∫ tn−1

0

∫ tn−2

0
· · ·

∫ t3

0

∫ t2

0
dt1dt2 · · · dtn−1

= λne−λt1R+(t)

∫ t

0

∫ tn−1

0

∫ tn−2

0
· · ·

∫ t3

0
t2 dt2 · · · dtn−1

= λne−λt1R+(t)

∫ t

0

∫ tn−1

0

∫ tn−2

0
· · ·

∫ t4

0

t23
2

dt3 · · · dtn−1

= · · · = λne−λt1R+(t)

∫ t

0

tn−2
n−1

(n− 2)!
dtn−1 = λne−λt

tn−1

(n− 1)!
1R+(t),

qui est bien la densité de la loi γ(n, λ).

ii) La densité f(Γ1,··· ,Γn)|Γn+1=t est, pour tout (t1, · · · , tn) dans Rn :

f(Γ1,··· ,Γn)|Γn+1=t (t1, · · · , tn) =
λn+1e−λt

λn+1tne−λt

n!

1(0≤t1≤···≤tn≤t)(t1, · · · , tn)

=
n!

tn
1(0≤t1≤···≤tn≤t)(t1, · · · , tn),

qui est bien la densité dn de la loi Dn([0, t]).
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iii) Soit A dans Bor(Rn). Alors :

P [(Γ1, · · · ,Γn) ∈ A | (Γn ≤ t ≤ Γn+1)] =
P [((Γ1, · · · ,Γn) ∈ A) ∩ (Γn ≤ t ≤ Γn+1)]

P [Γn ≤ t ≤ Γn+1]
.

(3.22)

La relation (3.21) nous permet d’expliciter la densité du vecteur (Γ1, · · · ,Γn+1), qui

est, pour tout (t1, · · · , tn+1) dans Rn+1, égale à :

f(Γ1,··· ,Γn+1)(t1, · · · , tn+1) = λn+1e−λtn+11(0≤t1≤···≤tn+1)(t1, · · · , tn+1). (3.23)

Dès lors, grâce au théorème de Tonelli :

P [Γn ≤ t ≤ Γn+1] =

∫
Rn+1

λn+1e−λtn+11(0≤t1≤···≤tn≤t≤tn+1)(t1, · · · , tn+1)dt1 · · · dtn+1

= λn+1

∫ +∞

t
e−λtn+1dtn+1 ×

∫ t1

0

∫ t2

t1

· · ·
∫ tn−1

tn−2

∫ t

tn−1

dtndtn−1 · · · dt1

= λne−λt × tn

n!
.

(3.24)

D’autre part, encore grâce au théorème de Tonelli :

P [((Γ1, · · · ,Γn) ∈ A) ∩ (Γn ≤ t ≤ Γn+1)]

=

∫
A

∫
R

λn+1e−λtn+11(0≤t1≤···≤tn≤t≤tn+1)(t1, · · · , tn+1)dt1 · · · dtn+1

= λn+1

∫ +∞

t
e−λtn+1dtn+1 ×

∫
A
1(0≤t1≤···≤tn≤t)(t1, · · · , tn)dt1 · · · dtn

= λne−λt ×
∫
A
1(0≤t1≤···≤tn≤t)(t1, · · · , tn)dt1 · · · dtn.

(3.25)

Ainsi grâce aux égalités (3.24) et (3.25), l’égalité (3.22) devient :

P [(Γ1, · · · ,Γn) ∈ A | (Γn ≤ t ≤ Γn+1)]

=
λne−λt

λne−λt × tn

n!

×
∫
A
1(0≤t1≤···≤tn≤t)(t1, · · · , tn)dt1 · · · dtn

=
n!

tn

∫
A
1(0≤t1≤···≤tn≤t)(t1, · · · , tn)dt1 · · · dtn,

ce qu’il fallait montrer.

�

Voici un corollaire qui nous sera utile :

Corollaire 3.31 Avec les mêmes notations que la Proposition 3.29, le vecteur

(
Γ1

Γn+1
, · · · , Γn

Γn+1

)
suit la loi Dn([0, 1]).
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Preuve du corollaire 3.31 : En reprenant la densité de la relation (3.21), si f désigne

une fonction positive définie sur Rn :

E

[
f

(
Γ1

Γn+1
, · · · , Γn

Γn+1

)]
=

∫
R∗+

λn+1e−λtn+1

(∫
Rn
f

(
t1
tn+1

, · · · , tn
tn+1

)
1(0≤t1≤···≤tn+1)((tj)1≤j≤n+1)dt1 · · · dtn

)
dtn+1.

Effectuons le changement de variable : ∀k ∈ {1, · · · , n} : uk =
tk
tn+1

.

Alors, nous avons : 0 < t1 < · · · < tn < tn+1 ⇐⇒ 0 < u1 < · · · < un < 1.

Le jacobien de ce changement de variable est tnn+1. Donc :

E

[
f

(
Γ1

Γn+1
, · · · , Γn

Γn+1

)]
=

∫
R∗+

λn+1tnn+1e
−λtn+1

(∫
Rn
f (u1, · · · , un)1(0≤u1≤···≤un<1)((uj)1≤j≤n)du1 · · · dun

)
dtn+1.

=

(∫
R∗+

λn+1tnn+1e
−λtn+1dtn+1

)(∫
Rn
f (u1, · · · , un)1(0≤u1≤···≤un<1)((uj)1≤j≤n)du1 · · · dun

)
.

Or, nous reconnaissons la loi gamma γ(n+ 1, λ) dans la première intégrale, de sorte que :∫
R∗+

λn+1tnn+1e
−λtn+1dtn+1 = (n+ 1)!

Et donc, finalement :

E

[
f

(
Γ1

Γn+1
, · · · , Γn

Γn+1

)]
= (n+1)!×

∫
Rn
f (u1, · · · , un)1(0≤u1≤···≤un<1)((uj)1≤j≤n)du1 · · · dun.

Nous reconnaissons la densité dn de la loi Dn([0, 1]). �

De cette étude, nous obtenons donc une nouvelle construction d’un processus de Poisson :

Proposition 3.32 Reprenons les mêmes notations que la Proposition 3.29.

Et posons, pour tout t ≥ 0 : Pt =
+∞∑
n=1

1(Γn≤t). Et considérons le processus (Pt)t≥0.

Alors ce processus est un processus de Poisson d’intensité λ.

Preuve de la proposition 3.32 : Tout d’abord, pour tout t ≥ 0, fixé, Pt suit la loi de

Poisson de paramètre λt.

En effet, pour tout entier naturel k, sachant que la loi du vecteur (Γ1, · · · ,Γk+1) : est, pour

tout (t1, · · · tk+1) dans Rk+1 égale à : λk+1e−λtk+11(0<t1≤···<tk+1)((tj)j∈{1, ··· ,k+1}, et grâce au

théorème de Tonelli :
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P(Pt = k) = P(Γk ≤ t < Γk+1)

= λk+1

∫
Rk+1

e−λtk+110<t1≤···<tk+1
((tj)j∈{1, ··· ,k+1})dt1 · · · dtk+1

= λk+1

∫ t

0

∫ t

t1

· · ·
∫ t

tk−1

∫ +∞

t
e−λtk+1dtk+1dtk · · · dt1

= λk+1

∫ t

0

∫ t

t1

· · ·
∫ t

tk−1

e−λtdtk · · · dt1

= · · · = λke−λt
tk

k!
,

ce qu’il fallait trouver. Nous allons maintenant calculer les lois fini-dimensionnelles du pro-

cessus (Pt)t≥0. Soit un entier naturel n non nul, et soient s1 ≤ · · · ≤ sn des entiers naturels.

Soient 0 ≤ t1 < · · · < tn = t des réels positifs.

Considérons : k1 = s1, k2 = s2−s1, · · · , kn = sn−sn−1. Alors, sachant que N0 = 0, P-presque

sûrement, en posant t0 = 0.

P

 n⋂
j=1

(Ptj = sj)

 = P

 n⋂
j=1

(Ptj − Ptj−1 = kj)

 .
Notons que :

n⋂
j=1

(Ptj − Ptj−1 = kj) ⊂ (Ptn = sn). Donc :

n⋂
j=1

(Ptj − Ptj−1 = kj) = (Ptn = sn) ∩

 n⋂
j=1

(Ptj − Ptj−1 = kj)


= (Ptn = sn) ∩

 n⋂
j=1

(Ptj = sj)

 = (Ptn = sn) ∩

 n⋂
j=1

(Γsj ≤ tj < Γsj+1)

 .
D’après la Proposition 3.29 (iii), la loi du vecteur (Γ1, · · · ,Γs1 ,Γs1+1, · · · ,Γsn) sachant

l’évènement (Ptn = sn) = (Pt = sn) = (Γsn ≤ t < Γsn+1) est la loi de Dirichlet Dsn([0, t]).
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Donc, en posant s0 = 0 :

P

 n⋂
j=1

(Ptj − Ptj−1 = kj)


= P[Pt = sn]× P(Pt=sn)

 n⋂
j=1

(Ptj − Ptj−1 = kj)


=
λsntsne−λt

sn!
× P(Pt=sn)

 n⋂
j=1

(Γsj ≤ tj < Γsj+1)


=
tsnsn!

tsnsn!
λsne−λt

∫
Rsn

 n∏
j=1

1(xsj≤tj<xsj+1)(xsj , xsj+1)

10≤x1≤···≤xsn≤t(x1, · · · , xsn)dx1 · · · dxsn

= λsne−λt
∫
Rsn

1(t0≤x1≤···xs1≤t1<xs1+1≤···≤xs2≤t2<xs2+1≤··· ...≤xsn≤t)((xj)1≤j≤sn)dx1 · · · dxsn

= λsne−λt
n∏
j=1

∫
R
kj

1(tj−1≤xsj−1+1≤···xsj≤tj)((xm)sj−1+1≤m≤sj )dxsj−1+1 · · · dxsj

= λsne−λtn
n∏
j=1

(tj − tj−1)kj

kj !
,

les calculs présents dans le produit étant encore des intégrales itérées déjà rencontrées.

Or : λsn = λk1 × · · · × λkn , et : e−λtn = e−λ(t1−t0) × · · · × e−λ(tn−tn−1), et finalement :

P

 n⋂
j=1

(Ptj − Ptj−1 = kj)

 =
n∏
j=1

[λ(tj − tj−1)]kj

kj !
e−λ(tj−tj−1),

ce qui démontre que les Ptj −Ptj−1 , pour j compris entre 1 et n sont indépendantes et suivent

respectivement la loi de Poisson P(λ(tj − tj−1)). Le Théorème 3.22 permet ainsi de conclure.

�

Remarque 3.33 Pt compte le nombre de Γj qui sont inférieurs ou égaux à t.

3.3 Série de Le Page pour une variable α-stable symétrique

Proposition 3.34 Soit (Γj)j≥1 la suite des instants d’arrivée d’un processus de Poisson

d’intensité égale à 1. Et soit (Rj)j≥1 une suite de variables aléatoires réelles indépendantes

et identiquement distribuées, et indépendantes de (Γj)j≥1.

Si
∑
j≥1

Γ
− 1
α

j Rj converge P-presque sûrement, alors elle converge vers une variable aléatoire

α-stable.
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Preuve de la proposition 3.34 : Soit X la limite presque sûre de cette série.

Alors elle est mesurable et soient :

X ′ =
+∞∑
j=1

(Γ′j)
− 1
αR′j , X

′′ =
+∞∑
j=1

(Γ′′j )
− 1
αR′′j ,

où (Γ′j)j≥1, (R
′
j)j≥1, (Γ

′′
j )j≥1, (R

′′
j )j≥1 sont des copies indépendantes de (Γj)j≥1, (Rj)j≥1.

Soient A,B > 0 tels que Aα +Bα = 1. Alors :

AX ′ +BX ′′ =
+∞∑
j=1

(A−αΓ′j)
− 1
αR′j +

+∞∑
j=1

(B−αΓ′′j )
− 1
αR′′j a la même loi que X =

+∞∑
j=1

Γ
− 1
α

j Rj .

En effet, tout d’abord (A−αΓ′j)j≥1 est la suite des instants d’arrivée d’un processus de Poisson

d’intensité Aα car pour tout réel x et pour tout entier j ≥ 1 :

P
[
A−α(Γ′j+1 − Γ′j) > x

]
= P(Γ′j+1 − Γ′j > Aαx) = e−A

αx,

car Γj+1 − Γj suit la loi exponentielle E(1), ce qui montre que A−α(Γ′j+1 − Γ′j) suit la loi

exponentielle E(Aα).

Et pour tous entiers non nuls k et j tels que k 6= j : A−α(Γ′k+1 − Γ′k) ⊥⊥ A−α(Γ′j+1 − Γ′j).

De même, (B−αΓ′′j )j≥1 est la suite des temps d’arrivée d’un processus de Poisson d’intensité

Bα.

Nous superposons ces deux processus de Poisson, grâce au Lemme 3.25, le résultat sera encore

un processus de Poisson d’intensité : Aα +Bα = 1.

Si (Γj)j≥1 sont les instants d’arrivée du processus superposé, alors chaque Γj est soit A−αΓ′m

soit B−αΓ′′n, pour un certain m ≥ 1 ou un certain n ≥ 1.

Soit :

Ri =

{
R′m, si : Γj = A−αΓ′m

R′′n, si : Γ′′j = B−αΓ′′n

Les Rj sont indépendants et identiquement distribuées, alors en fait :

(A−αΓ′n)−
1
αR′n + (B−αΓ′′n)−

1
αR′′n suit la loi que : (Aα +Bα)× (Γn)−

1
αRn = Γ

− 1
α

n Rn.

D’où le résultat. �

Remarque 3.35 Cette proposition suggère qu’une variable aléatoire X stable peut être

représentée comme la somme d’une série de ce type. Il est néanmoins nécessaire d’ajouter des

hypothèses sur α et sur la loi de Ri afin d’avoir une série convergente presque sûrement. En

fait, nous allons considérer Rj = εjWj , où εj = ±1 est la variable aléatoire indépendante de

Wj . La dernière proposition motive le théorème suivant.
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Théorème 3.36 Soient les suites de variables aléatoires réelles sur le même espace proba-

bilisé (Ω,F ,P) :

— (εj)j≥1 une suite de variables aléatoires indépendantes identiquement distribuées toutes

de loi de Rademacher R.
— (Γj)j≥1 où Γj désigne le j-ème instant d’arrivée d’un processus de Poisson d’intensité

1.

— (Wj)j≥1, où les Wj indépendantes identiquement distribuées et possèdant un moment

d’ordre α.

On suppose (εj)j≥1, (Γj)j≥1 et (Wj)j≥1 indépendantes les unes des autres.

Alors :
n∑
j=1

εj Γ
− 1
α

j Wj
n→+∞−−−−−→
P−ps

X,

où X a comme loi Sα(σ, 0, 0), et où :

σ =
[
c−1
α E(|W1|α)

] 1
α , (3.26)

où cα est la constante rencontrée dans la Proposition 1.9.

Preuve du théorème 3.36 : La démonstration de ce théorème est présente dans le livre

de Taqqu-Samorodnitsky [2], j’ai apporté des éléments supplémentaires pour en éclaircir des

zones d’ombre.

Etape 1 : Soit (Uj)j≥1 une suite de variables indépendantes identiquement distribuées

suivant la loi uniforme U(]0, 1[), et indépendante des suites (εj)j≥1 et (Wj)j≥1.

Et considérons pour j ≥ 1 : Yj = εjU
− 1
α

j Wj .

Ainsi grâce à la multiplication par εj , les Yj sont indépendantes identiquement dis-

tribuées symétriques. En effet, pour la symétrie, comme : Uj ⊥⊥ Wj ⊥⊥ εj , en passant

par les fonctions caractéristiques, pour tout t réel :

ψYj (t) =
1

2

[∫ 1

0

∫
Ω

(
eitu

− 1
αWj(ω) + e−itu

− 1
αWj(ω)

)
du dP(ω)

]
= ψ(−Yj)(t).

Et pour tout λ > 0 :

P(|Y1| > λ) = P

(
U
− 1
α

1 |W1| > λ

)
= P

(
U1 < λ−α|W1|α

)
. (3.27)
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Or, nous avons, grâce à l’indépendance de U1 et W1, et au théorème de Tonelli :

P
(
U1 < λ−α|W1|α

)
= P

(
U1 − λ−α|W1|α < 0

)
=

∫ 1

0

∫ +∞

0
1]−∞,0[(u− λ−αwα)dPU1(u)⊗ dP|W1|(w)

=

∫ +∞

0

(∫ 1

0
1]−∞,0[(u− λ−αwα)dPU1(u)

)
dP|W1|(w)

=

∫ +∞

0
E
[
1]−∞,0[(U1 − λ−αwα)

]
dP|W1|(w)

=

∫ +∞

0
E
[
1]−∞,λ−αwα](U1)

]
dP|W1|(w)

=

∫ +∞

0
P
(
U1 < λ−αwα

)
dP|W1|(w).

(3.28)

Ainsi, en combinant (3.27) et (3.28), nous obtenons :

P(|Y1| > λ) =

∫ +∞

0
P(U1 < λ−αxα)dP|W1|(x)

=

∫ λ

0
P(U1 < λ−αxα)dP|W1|(x) +

∫ +∞

λ
P(U1 < λ−αxα)dP|W1|(x)

=

∫ λ

0
λ−αxαdP|W1|(x) +

∫ +∞

λ
1dP|W1|(x)

= λ−α
∫ λ

0
xαdP|W1|(x) + P(|W1| > λ).

(3.29)

Donc :

λαP(|Y1| > λ) =

∫ λ

0
xαdP|W1|(x) + λαP(|W1| > λ). (3.30)

Par convergence monotone, d’une part :

lim
λ→+∞

∫ λ

0
xαdP|W1|(x) = E(|W1|α). (3.31)

Et d’autre part, puisque : λαP(|W1| > λ) ≤
∫

Ω
|W1|α1{|W1|>λ}dP :

lim
λ→+∞

λαP(|W1| > λ) = 0. (3.32)

(3.31), (3.32) et (3.30) donne alors :

lim
λ→+∞

λαP(|Y1| > λ) = E(|W1|α), (3.33)
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Donc Y1 vérifie le Corollaire 3.19 avec h(x) = 1, et c = E(|W1|α) ce qui donne d’après

le Théorème limite 3.20 (Y1 étant symétrique) :

1

n
1
α

n∑
j=1

Yj
L−−−−−→

n→+∞
X, où : X ∼ Sα(σ, 0, 0), pour : σ > 0.

Soit la constante cα > 0 de la relation (3.26) soit : σ =
[
c−1
α E (Wα

i )
] 1
α .

Nous avons : lim
t→0+

t−α(1− φX(t)) = σα.

En effet : φX(t) = e−σ
α|t|α , donc :

1− φX(t) = σα|t|α −
+∞∑
k=1

(−σα|t|α)k

k!
=⇒ 1− φX(t)

tα
−−−→
t→0+

σα

La limite (de nombres complexes) obtenue étant réelle, alors :

lim
t→0+

[
Re

(
1− φX(t)

tα

)]
= σα, et : lim

t→0+

[
Im

(
1− φX(t)

tα

)]
= 0.

Alors :

σα = lim
t→0+

[
Re

(
1− φX(t)

tα

)]
= lim

t→0+

[
Re

(∫
Ω
t−α

(
1− eitX(ω)

)
dP(ω)

)]
= lim
t→0+

∫
Ω
t−α[1− cos(tX(ω))]dP(ω) = lim

t→0+

∫
R
t−α[1− cos(tx)]dPX(x)

= 2 lim
t→0+

∫ +∞

0
t−α[1− cos(tx)]dPX(x).

(3.34)

(La dernière égalité étant déduite de la symétrie de X.)

D’autre part, grâce au théorème de Fubini :∫ +∞

0
sin(v)

(
1− F

(v
t

)
t−α
)

dv =

∫ +∞

0
t−α sin(v)

∫
Ω
1(X> v

t )
(ω)dP(ω)dv

=

∫
Ω

∫ +∞

0
t−α sin(v)1(X> v

t )
(ω)dv dP(ω)

=

∫
Ω

∫ tX(ω)

0
t−α sin(v)dv dP(ω)

=

∫
Ω

[1− cos(tX(ω))]t−αdP(ω).

(3.35)

Donc, des derniers calculs (3.34) et (3.35), on déduit :

σα = 2 lim
t→0+

∫ +∞

0
sin(v)

(
1− F

(v
t

))
t−αdv. (3.36)
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Or comme lim
λ→+∞

λαP(|X| > λ) = cασ
α (Propriété 3.14 (ii)) :

∀v > 0 : lim
t→0+

(v
t

)α
P
(
|X| > v

t

)
= cασ

α. (3.37)

Et comme P
(
|X| > v

t

)
= 2

(
1− F

(v
t

))
(encore la symétrie), alors on déduit de

(3.36) et (3.37) :

lim
t→0+

t−α
(

1− F
(v
t

))
= cασ

α × v−α

2
.

D’où : σα =

(∫ +∞

0

sin(v)

vα
dv

)
× cασα. Ce qui donne : cα =

(∫ +∞

0

sin(v)

vα
dv

)−1

.

Etape 2 : En écrivant
1

n
1
α

n∑
j=1

Yj d’une autre manière, nous allons montrer que cette

moyenne a une limite ayant la même loi que la somme

+∞∑
j=1

εjΓ
− 1
α

j Wj .

D’après la Proposition 3.29 la loi de (Γ1, ...,Γn) sachant Γn+1 est la loi de Dirichlet

d’ordre n sur [0,Γn+1] : Dn([0,Γn+1]).

Et d’après le Corollaire 3.31, la loi de

(
Γ1

Γn+1
, · · · , Γn

Γn+1

)
sachant Γn+1 est Dn([0, 1]),

qui ne dépend plus de Γn+1.

Or, d’après la Proposition 3.28, Dn([0, 1]) peut être construite via une suite croissante

de n variables aléatoires indépendantes (Ui)1≤i≤n, et toutes de loi : U([0, 1]).

Nous allons démontrer que les variables aléatoires :

n∑
j=1

εjU
− 1
α

j Wj et

n∑
j=1

εjU
− 1
α

(j) Wj

ont la même loi.

En effet, nous allons montrer l’égalité de leurs fonctions caractéristiques.

Commentaire 3.37 Le livre de Taqqu-Samorodnitsky [2] n’écrit pas le détail de ce

passage pourtant guère trivial, m’ayant laissé un doute, grâce au travail effectué sur

les processus de Poisson, voici l’explication.

Soit, pour une permutation σ ∈ Sn l’évènement :

Aσ = {ω ∈ Ω | Uσ(1)(ω) < · · · < Uσ(n)(ω)}.

Et considérons l’évènement Ω∗ =
⋃̇
σ∈Sn

Aσ, où le symbole
⋃̇

désigne une union dis-

jointe.
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Et rappelons les notations : An = {(x1, · · · , xn) ∈ Rn | x1 < · · · < xn},

et Rσ :

{
Rn −→ Rn

(x1, · · · , xn) 7→ (xσ(1), · · · , xσ(n))
.

Alors, en effectuant le changement (y1, · · · , yn) = R−1
σ (x1, · · · , xn) :

P(Aσ) =

∫
[0,1]n

1An(xσ(1), · · · , xσ(n))dx1 · · · dxn

=

∫
[0,1]n

1An(y1, · · · , yn)dy1 · · · dyn = P(AId).

Or, par un calcul d’intégrale itérée déjà rencontrée :

P(AId) =

∫
[0,1]n

1(0<x1<···<xn)(x1, · · · , xn)dx1 · · · dxn =
1

n!
.

Dès lors : P(Ω∗) =
∑
σ∈Sn

P(Aσ) = n! × 1

n!
= 1. Ω∗ est alors un évènement P-presque

sûr.

Pour t réel, dès lors nous avons :

E

exp

it
 n∑
j=1

εjU
− 1
α

(j) Wj

 =
∑
σ∈Sn

E

1Aσ × exp

it
 n∑
j=1

εjU
− 1
α

σ(j)Wj

 .

(3.38)

Or, grâce au théorème de Fubini, et en notant W le vecteur aléatoire (W1, · · · ,Wn),

et par E le vecteur aléatoire (ε1, · · · , εn), w = Rn (w1, · · · , wn) le vecteur de Rn et

e = (e1, · · · , en) le vecteur de Rn :

E

1Aσ exp

it
 n∑
j=1

εjU
− 1
α

σ(j)Wj


=

∫
(Rn)3

1An(uσ(1), · · · , uσ(n))e
it

(
n∑
j=1

eju
− 1
α

σ(j)
wj

)
dλn(u1, · · · , un)dPW (w)dPE(e)

=

∫
Rn
1An(uσ(1), · · · , uσ(n))

∫
(Rn)2

e
it

(
n∑
j=1

eju
− 1
α

σ(j)
wj

)
dPW (w)dPE(e)

dλn(u1, · · · , un).

(3.39)

Or, comme les εjWj sont indépendantes entre elles, les εj étant indépendantes iden-

tiquement distribuées, les Wj également, alors pour tout (a1, · · · , an) appartenant à

Rn :
n∑
j=1

ajεjWj
L
=

n∑
j=1

ajεσ(j)Wσ(j).
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Ce qui équivaut à l’égalité des fonctions caractéristiques, c’est-à-dire pour tout réel t :

∫
(Rn)2

e
it

(
n∑
j=1

ejajwj

)
dPW (w)dPE(e) =

∫
(Rn)2

e
it

(
n∑
j=1

eσ(j)ajwσ(j)

)
dPW (w)dPE(e).

(3.40)

En appliquant cette dernière égalité (3.40) à (a1, · · · , an) =

(
u
− 1
α

σ(1), · · · , u
− 1
α

σ(n)

)
, la

relation (3.39) devient :

E

1Aσ exp

it
 n∑
j=1

εjU
− 1
α

σ(j)Wj


=

∫
Rn
1An(uσ(1), · · · , uσ(n))

∫
(Rn)2

e
it

(
n∑
j=1

eσ(j)u
− 1
α

σ(j)
wσ(j)

)
dPW (w)dPE(e)

dλn(u1, · · · , un).

=

∫
Rn
1An(uσ(1), · · · , uσ(n))

∫
(Rn)2

e
it

(
n∑
j=1

eju
− 1
α

j wj

)
dPW (w)dPE(e)

dλn(u1, · · · , un).

=E

1Aσ exp

it
 n∑
j=1

εjU
− 1
α

j Wj


(3.41)

En injectant l’égalité (3.41) dans l’égalité (3.38) :

E

exp

it
 n∑
j=1

εjU
− 1
α

(j) Wj

 =
∑
σ∈Sn

E

1Aσ × exp

it
 n∑
j=1

εjU
− 1
α

j Wj

 .

= E

exp

it
 n∑
j=1

εjU
− 1
α

j Wj

 ,

ce qu’il fallait montrer.

Ainsi on ordonne les Uj de façon croissante. Par conséquent :

1

n
1
α

n∑
j=1

Yj
L
=

1

n
1
α

n∑
j=1

εjU
− 1
α

j Wj

L
=

1

n
1
α

n∑
j=1

εj

(
Γj

Γn+1

)− 1
α

Wj

L
=

(
Γn+1

n

) 1
α

n∑
j=1

εjΓ
− 1
α

j Wj
L−−−−−→

n→+∞
X,
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où X ∼ Sα(σ, 0, 0) grâce à l’étape 1.

Etape 3 : Il nous reste à démontrer que la série
∑
j≥1

εjΓ
− 1
α

j Wj converge P-presque sûrement,

la limite sera X, la même limite que celle en loi.

Pour tout n ≥ 1, Γn est une somme de n variables ek indépendantes suivant toutes

la loi exponentielle E(1). Par la loi forte des grands nombres :
Γn
n

converge P-presque

sûrement vers E(e1) = 1.

Alors
Γn+1

n
=

Γn+1

n+ 1
× n+ 1

n
converge encore P-presque sûrement vers 1.

Ainsi l’évènement Ω̃ =

{
lim

n→+∞

Γn
n

= 1

}
∩ {Γ1 > 0} est P−presque sûr. Nous allons

prouver que
∑
j≥1

εjΓ
− 1
α

j Wj converge sur Ω̃.

Rappelons que si Y est une variable aléatoire réelle sur Ω alors la variable aléatoire

Y tronquée par un réel λ > 0 fixé est la variable aléatoire réelle : Y [λ] définie par :

Y [λ] = Y 1{|Y |≤λ}.

On va utiliser le théorème des trois séries de Kolmogorov, on va démontrer qu’il existe

λ > 0 tel que :

i)
∑
j≥1

P

(∣∣∣∣εjΓ− 1
α

j Wj

∣∣∣∣ > λ

)
converge,

ii)
∑
j≥1

E

[(
εjΓ
− 1
α

j Wj

)[λ]
]

converge,

iii)
∑
j≥1

Var

[(
εjΓ
− 1
α

j Wj

)[λ]
]

converge.

Tout d’abord,

(
Γn
n

)
n≥1

converge sur Ω̃, alors cette suite est bornée P-presque sûrement,

il existe deux variables aléatoires positives C1, C2 telles que :

∀ω ∈ Ω̃, ∀n ≥ 1 : C1(ω) ≤ Γn(ω)

n
≤ C2(ω).

Commentaire 3.38 Dans le livre de Taqqu-Samorodnitsky [2], on peut lire pour ce

passage C1, C2 constantes, or, C1, C2 sont évidemment aléatoires (non déterministes),

le passage suivant utilisant le lemme de Borel-Cantelli que j’expose, rend complète

et rigoureuse la démonstration (le lemme de Borel-Cantelli n’était pas mentionné, le

calcul paraissait direct).
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Alors P− presque sûrement, C1 > 0 et C2 > 0. Et nous avons :

P

(∣∣∣∣εjΓ− 1
α

j Wj

∣∣∣∣ > λ

)
= P

(
Γ
− 1
α

j |Wj | > λ

)
= P (|Wj |α > λαΓj)

≤ P (|Wj |α > λαjC1)

= P [{|Wj |α > λαjC1} ∩ {C1 > 0}] .

Considérons η ∈ Q+
∗ et l’évènement {C1 > η}, alors :

P [{|Wj |α > λαC1j} ∩ {C1 > η}] = P [|Wj |α > λαηj] .

Or, comme E(|Wj |α) < +∞, alors pour tout λ strictement positif, la série∑
j≥1

P [|Wj |α > λαηj] converge.

En effet, en comparant la série à une intégrale et à l’aide du théorème de Tonelli :

+∞∑
j=1

P [|Wj |α > λαηj] =

+∞∑
j=1

∫ +∞

λ(ηj)
1
α

dP|W1|(y) ≤
∫ +∞

0

∫ +∞

λ(ηj)
1
α

dP|W1|(y)dx

=

∫ +∞

0

∫ yαλ−αη−1

0
dx dP|W1|(y) =

∫ +∞

0
yαλ−αη−1dP|W1|(y)

=
E (|W1|α)

λαη
< +∞.

Ainsi, la série :
∑
j≥1

P [{|Wj |α > λαC1j} ∩ {C1 > η}] converge.

Ce qui, par le lemme de Borel-Cantelli équivaut à :

P

[(
lim sup
j→+∞

{|Wj |α > λαC1j}

)
∩ {C1 > η}

]
= 0.

Faisant tendre η vers 0, par convergence monotone (décroissante), nous obtenons :

P

[(
lim sup
j→+∞

{|Wj |α > λαC1j}

)
∩ {C1 > 0}

]
= 0 = P

[
lim sup
j→+∞

{|Wj |α > λαC1j}

]
,

car P(C1 > 0) = 1.

Alors, encore par le lemme de Borel-Cantelli, la série :
∑
j≥1

P [|Wj |α > λαC1j] converge,

d’où (i). Pour la série de (ii), elle vaut zéro, car chaque espérance est nulle.
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Enfin pour la série (iii), grâce aux théorèmes de transfert et de Tonelli :

+∞∑
j=1

E

[(
εjΓ
− 1
α

j Wj1
{Γ−

1
α

j |Wj |≤λ}

)2
]

=

+∞∑
j=1

E

(
Γ
− 2
α

j W 2
j 1{Γ−

1
α

j |Wj |≤λ}

)

=
+∞∑
j=1

∫ +∞

0

∫ +∞

λ−α|w|α
e−x

xj−1

(j − 1)!
x−

2
αw2 dx dP|W1|(w).

=

∫ +∞

0

∫ +∞

λ−α|w|α
e−x

+∞∑
j=1

xj−1

(j − 1)!

x−
2
αw2dx dP|W1|(w).

=

∫ +∞

0

∫ +∞

λ−α|w|α
x−

2
αw2 dx dP|W1|(w).

=

∫ +∞

0

[
x1− 2

α

1− 2
α

]+∞

λ−α|w|α
w2 dP|W1|(w)

=
λ2−αα

2− α

∫ +∞

0
|w|α dP|W1|(w)

≤ λ2−αα

2− α
E(|W1|α) < +∞.

�

Corollaire 3.39 Sous ces hypothèses et notations du théorème , si l’on suppose de plus les

Wj symétriques, alors
∑
j≥1

Γ
− 1
α

j Wj converge P-ps vers une variable aléatoire X dont la loi

est Sα(σ, 0, 0).

Preuve du corollaire 3.39 : En effet, si les Wj sont symétriques, alors les variables

aléatoires εjWj et Wj ont la même loi. En effet, observons les fonctions caractéristiques,

sachant que : εj ⊥⊥Wj , alors pour tout réel t, nous avons :

E
[
eiεjWjt

]
=

1

2

∫
R

eiwtdPWj (w) +
1

2

∫
R

e−iwtdPWj (w)

=
1

2

[∫
R

eiwtdPWj (w) +

∫
R

eiwtdP−Wj (w)

]
=

1

2
× 2

∫
R

eiwtdPWj (w) =

∫
R

eiwtdPWj (w) = E
(
eiWjt

)
.

Dès lors, parcourant la démonstration du Théorème 3.36, tous les calculs des étapes 1 et 2

restent valides en remplaçant les εjWj par les variables symétriques Wj , car ces calculs ne font

intervenir que les lois de εjWj ou bien de |Wj |, et par le fait que (Γj)j≥1 est indépendante de
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(Wj)j≥1. Et, de même, l’étape 3 assurant la convergence P-presque sûre ne fait qu’intervenir

la loi des |Wj |. �

Corollaire 3.40 Soit 0 < α < 2, alors toute variable aléatoire X du type S(σ, 0, 0) (SαS de

paramètre σ > 0) possède comme série de Le Page :

X = σ

(
cα

E (|W1|α)

) 1
α

×
+∞∑
j=1

εjΓ
− 1
α

j Wj, P-ps,

où (Wj)j≥1 est une suite de variables i.i.d telles que E (|W1|α) < +∞, ou bien :

X = σ

(
cα

E (|W1|α)

) 1
α

×
+∞∑
j=1

Γ
− 1
α

j Wj, P-ps,

si l’on suppose en plus les Wj symétriques.

4 Processus symétriques α-stables

4.1 Vecteur aléatoire stable, variable SαS complexe

Définition 4.1 Un vecteur aléatoire X = (X1, · · · , Xd) dans Rd est dit stable si pour tous

réels strictement positifs a, b et toutes copies X(1), X(2) indépendantes de X, il existe deux

réels c et d tels que :

aX(1) + bX(2) L= cX + d. (4.1)

On dit que X est strictement stable si pour tous réels a, b strictement positifs, et toutes copies

X(1), X(2) indépendantes de X, il existe un réel c tel que : aX(1) + bX(2) L= cX.

Enfin, on dit que le vecteur aléatoire X est symétrique stable, s’il est stable et si de plus il

est symétrique, c’est-à-dire :

∀A ∈ Bor(Rd) : P(X ∈ A) = P(−X ∈ A).

Remarque 4.2 Les définitions ci-dessus donnent des conditions sur la loi jointe. Qu’est ce

que cela implique pour les composantes X1, · · · , Xd ? Chaque composante est-elle stable ?

Qu’en est-il des combinaisons linéaires ? Le théorème suivant répond à ces questions.

Théorème 4.3 Soit X = (X1, · · · , Xd) un vecteur aléatoire stable (respectivement stricte-

ment stable, respectivement symétrique stable) dans Rd.
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— Alors il existe une unique constante α appartenant à ]0, 2] telle que la relation (4.1)

de la Définition 4.1 a lieu pour c = (aα + bα)
1
α .

— De plus, toute combinaison linéaire des composantes de X est une variable aléatoire

α-stable (respectivement strictement stable, respectivement symétrique stable).

Comme la dimension 1, nous avons :

Corollaire 4.4 Un vecteur aléatoire X est stable dans Rd si et seulement s’il existe un

unique α appartenant à ]0, 2] telle que pour tout entier n ≥ 2, il existe un vecteur dn ∈ Rd

tel que pour toutes copies indépendantes X(1), · · · , X(n) :

n∑
j=1

X(j) L= n
1
αX + dn. (4.2)

Les derniers théorème et corollaire motivent alors la définition suivante :

Définition 4.5 Un vecteur aléatoire X = (X1, · · · , Xd) dans Rd est dite α-stable pour un

certain α appartenant à ]0, 2] si la relation (4.1) de la Définition 4.1 a lieu pour le réel

c = (aα + bα)
1
α ou si (de manière équivalente) la relation (4.2) du Corollaire 4.4 a lieu.

Le réel α est encore appelé (comme pour les lois stables) indice de stabilité du vecteur X.

Remarque 4.6 La seconde partie du Théorème 4.3 nous dit que si X est un vecteur aléatoire

stable alors toutes les combinaisons linéaires de ses composantes sont stables. La réciproque

est-elle vraie ? Malheureusement, si α < 2, la réponse est négative en général. Néanmoins la

réponse est oui si toutes les combinaisons linéaires des composantes de X sont strictement

stables (respectivement symétriques stables), ou encore si α ≥ 1. (Un contre-exemple existe

et a été trouvé par David J. Marcus dans le cas où 0 < α < 1, et est exposé dans le livre de

Taqqu-Samorodnitsky [2].)

Théorème 4.7 Soit X un vecteur aléatoire dans Rd.

i) Si toutes les combinaisons linéaires sont strictement stables, alors X est strictement

stable.

ii) Si toutes les combinaisons linéaires des composantes de X sont symétriques stables,

alors X est symétrique stable.

iii) Si toutes les combinaisons linéaires des composantes de X sont α-stables pour un

certain α ≥ 1, alors X est α-stable.
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Notation 4.8 Notons < · , · > le produit scalaire dans Rd. ‖·‖ désigne la norme euclidienne

dans Rd. Et Sd désigne la sphère unité euclidienne dans Rd.

Et notons, pour tout vecteur aléatoire α-stable X = (X1, · · · , Xd) sa fonction caractéristique :

φα, telle que pour tout Θ = (θ1, · · · , θd) dans Rd :

φα(Θ) = E [exp (i 〈θ,X〉)] = E

exp

i
 d∑
j=1

θjXj

 .

Théorème 4.9 Soit α un réel appartenant à ]0, 2], alors le vecteur aléatoire X = (X1, · · · , Xd)

dans Rd est α-stable si et seulement s’il existe une mesure finie Γ sur (Sd,Bor(Sd)) et un

vecteur µ0 ∈ Rd tels que, pour tout Θ = (θ1, · · · , θd) ∈ Rd :

i) Si α 6= 1 :

φα(Θ) = exp

{
−
∫
Sd

| 〈Θ, s〉 |α ×
[
1− i sgn (〈Θ, s〉) tan

(πα
2

)]
dΓ(s) + i 〈Θ, µ0〉

}
.

ii) Si α = 1 :

φα(Θ) = exp

{
−
∫
Sd

| 〈Θ, s〉 | ×
[
1 +

2

π
i sgn (〈Θ, s〉) log (|〈Θ, s〉|)

]
dΓ(s) + i 〈Θ, µ0〉

}
.

De plus, le couple (Γ, µ0) est unique lorsque 0 < α < 2.

Définition 4.10 Soit X = (X1, · · · , Xd) un vecteur aléatoire α-stable dans Rd, pour un

certain 0 < α < 2, alors :

— Le couple (Γ, µ0) associé à X dans le théorème 4.3 est appelé représentation spectrale

du vecteur stable X.

— La mesure Γ est appelée la mesure spectrale du vecteur stable X.

Remarque 4.11 Rappelons qu’une mesure m sur (Sd,Bor(Sd)) est symétrique si pour tout

A appartenant à Bor(Sd), m(A) = m(−A).

Dés lors, dans les cas stricte et symétrique, nous obtenons les résultats suivants :

Théorème 4.12 Soit α un réel appartenant à ]0, 2], alors le vecteur aléatoire X = (X1, · · · , Xd)

dans Rd est strictement α-stable si et seulement si la représentation spectrale (Γ, µ0) de X

vérifie :

i) Dans le cas où α 6= 1 : µ0 = 0Rd .

ii) Dans le cas où α = 1 : ∀k ∈ {1, · · · , d} :

∫
Sd

skdΓ(s) = 0.
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Théorème 4.13 Soit α un réel appartenant à ]0, 2[.

Alors le vecteur aléatoire X = (X1, · · · , Xd) dans Rd est symétrique α-stable (que l’on note

encore SαS) si et seulement s’il existe une unique mesure Γ finie sur (Sd,Bor(Sd)) telle que,

pour tout Θ dans Rd :

φα(Θ) = E [exp (i 〈Θ, X〉)] = exp

[
−
∫
Sd

|〈Θ, s〉|α dΓ(s)

]
. (4.3)

Remarque 4.14

— Les démonstrations des théorèmes 4.3, 4.7, 4.9, 4.12 et 4.13, et du corollaire 4.4 se

trouvent dans le livre de Taqqu-Samorodnitsky [2].

— Passons à présent aux variables complexes stables, et présentant leurs propriétés. Nous

allons plus tard présenter dans ce mémoire une classe importante de processus réels

stables (processus harmonisables) qui peuvent être définis en termes de variables com-

plexes SαS.

Soient X1, X2 deux variables aléatoires réelles définis sur le même espace probabilisé.

C’est la loi du vecteur (X1, X2) qui va caractériser la variable aléatoire complexe

X = X1 + iX2.

Définition 4.15 Soit α un réel appartenant à ]0, 2[.

i) Une variable aléatoire complexe X = X1 + iX2 est dite symétrique α-stable (encore

notée SαS) si le vecteur aléatoire bi-dimensionnel (X1, X2) est SαS.

ii) Une variable aléatoire complexe SαS X = X1 + iX2 est dite invariante par rotation

(ou isotrope) si :

∀ β ∈ [0, 2π[: eiβX
L
= X. (4.4)

Théorème 4.16 Soit α un réel appartenant à ]0, 2[. Alors une variable complexe SαS X

est isotrope si et seulement s’il existe σ > 0 telle que sa fonction caractéristique φX est de la

forme, pour tout z complexe :

φX(z) = E [i Re(zX)] = e−σ
α|z|α .

Voici le théorème relatif à la représentation en série de Le Page pour une variable complexe

SαS isotrope.

Théorème 4.17 Soit V une variable aléatoire complexe invariante par rotation.

Supposons que E [|Re(V )|α] < +∞. Et soit (Vj)j≥1 une suite de variables aléatoires indépendantes

identiquement distribuées et suivant toutes la loi de V.
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Supposons également que la suite des instants d’arrivée (Γj)j≥1 d’un processus de Poisson

d’intensité égale à 1, et la suite (Vj)j≥1 sont indépendantes.

Alors la suite (Yn)n≥1 de variables aléatoires complexes définie pour n entier naturel non nul

par :

Yn = cα

n∑
j=1

Γ
− 1
α

j Vj (4.5)

converge P-presque sûrement vers une variable aléatoire complexe Y qui est SαS(σ) où :

σ = c
− 1
α

α E [|Re(V )|α]
1
α .

Preuve du théorème 4.17 : Tout d’abord, par invariance par rotation, eiπV = −V
possède la même loi que V. Donc V est symétrique. Donc Re(V ) et Im(V ) le sont aussi :

−V L
= V ⇒ −Re(V )− i Im(V )

L
= Re(V ) + i Im(V )⇒

−Re(V )
L
= Re(V )

−Im(V )
L
= Im(V )

.

Ensuite encore par invariance par rotation, ei
π
2 V possède la même loi que V de sorte que :

E [|Im(V )|α] = E
[∣∣∣Re

(
ei
π
2 V
)∣∣∣α] = E [|Re(V )|α] .

Donc, comme E [|Re(V )|α] < +∞ et E [|Im(V )|α] < +∞ d’après le Corollaire 3.39 (le cas

réel), les deux suites de variables aléatoires réelles :

Re(Yn) =
n∑
j=1

Γ
− 1
α

j Re(Vj), et : Im(Yn) =
n∑
j=1

Γ
− 1
α

j Im(Vj),

convergent P−presque sûrement vers respectivement deux variables aléatoires réelles SαS,

que nous nommons : Y (1), et Y (2).

Il existe alors deux évènements Ω1,Ω2, tels que P(Ω1) = P(Ω2) = 1, et tels que :
∀ ω1 ∈ Ω1 : [Re(Yn)](ω1) −−−−−→

n→+∞
Y (1)(ω1)

∀ ω2 ∈ Ω2 : [Im(Yn)](ω2) −−−−−→
n→+∞

Y (2)(ω2)
.

Soit Y la variable aléatoire complexe égale à Y (1) + iY (2). Alors Ω3 = Ω1 ∩ Ω2, est un

évènement P-presque sûr, et alors pour tout ω dans Ω3 :

Yn(ω) = Re(Yn)(ω) + i Im(Yn)(ω) −−−−−→
n→+∞

Y (1)(ω) + i Y (2)(ω) = Y (ω),

ce qui prouve que la suite Yn converge P-presque sûrement vers Y.

Il nous reste à montrer que Y est complexe symétrique α-stable.
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Comme V est invariante par rotation, pour tout complexe non nul z, θz désignant un argument

de z :

Re(zV ) = Re
(
|z|eiθzV

)
= |z| Re

(
eiθzV

)
L
= |z| Re(V ), (4.6)

l’égalité en loi entre les premier et dernier membres étant encore vraie si z = 0.

Alors, appliquant le Corollaire 3.39 (le cas réel), à la série
∑
j≥1

Γ
− 1
α

j Re(zVj), et utilisant la

dernière égalité (4.6) :

E [exp (i Re(zY ))] = E

exp

+∞∑
j=1

Γ
− 1
α

j Re(zVj)


= exp

{
−c−1

α E [|Re(zV )|α]
}

= exp
{
−c−1

α |z|αE [|Re(V )|α]
}

= exp [−σα|z|α] ,

ce qu’il fallait démontrer. �

4.2 Processus stables

Dans cette section, T désigne un ensemble non vide arbitraire. Il peut être un espace de

fonctions ou de boréliens (ce qui sera en effet le cas).

Définition 4.18 Un processus stochastique (Xt)t∈T est dit stable si toutes ses lois fini-

dimensionnelles sont stables.

Il est strictement stable si toutes ses lois fini-dimensionnelles sont strictement stables.

Enfin, il est symétrique stable si toutes les lois fini-dimensionnelles sont symétriques stables.

Remarque 4.19 Les Théorèmes 4.3 et 4.7 impliquent que toutes les lois fini-dimensionnelles

d’un processus stable doivent le même indice de stabilité α, Ainsi, on peut définir l’indice de

stabilité d’un processus stable, et démontrer le théorème suivant :

Théorème 4.20 Soit (Xt)t∈T un processus stochastique. Alors :

a) (Xt)t∈T est strictement stable si et seulement si toutes les combinaisons linéaires

d∑
k=1

bkXtk , pour tous t1, · · · , td dans T , et tous b1, · · · , bd réels, (4.7)

sont strictement stables.

b) (Xt)t∈T est symétrique stable si et seulement si toutes les combinaisons linéaires de

la forme (4.7) sont symétriques stables.
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c) Si α ≥ 1, (Xt)t∈T est α-stable si et seulement si toutes les combinaisons linéaires de

la forme (4.7) sont α-stables.

Example 4.21 Un exemple de processus stable : Fixons 0 < α ≤ 2, et −1 ≤ β ≤ 1.

Le Théorème 1.4 de consistance de Kolmogorov justifie l’existence du processus (Zα(t))t≥0

appelé processus de Lévy α-stable (standard) et qui vérifie :

i) Zα(0) = 0, P-presque sûrement.

ii) (Zα(t))t≥0 est à accroissements indépendants.

iii) Pour tous s, t ≥ 0, tels que s < t : Zα(t)− Zα(s) suit la loi Sα((t− s)α, β, 0).

Ce processus est alors à accroissements stationnaires. Lorsque α = 2, nous retrouvons le

mouvement brownien. Les processus de Lévy α-stables sont symétriques lorsque β = 0. Et il

sont
1

α
−similaires (sauf quand α = 1, β 6= 0.).

4.3 Intégrale symétrique stable

Dans cette section, nous suivons toujours le livre de Taqqu-Samorodnitsky [2], en adaptant

les résultats et démonstrations au cas symétrique uniquement.

Soit 0 < α ≤ 2, et soit (E, E ,m) un espace mesuré, et considérons l’espace fonctionnel

Lα(E, E ,m), que l’on notera Lα(E).

”L’intégrale stable” d’une fonction déterministe f sera notée I(f). Nous allons définir une fa-

mille (I(f))f∈Lα(E) comme un processus stochastique indexé sur l’espace de fonctions Lα(E).

L’intégrale, que nous allons construire, aura une propriété de linéarité P-presque sûre.

Nous allons expliciter les lois fini-dimensionnelles et montrer que la famille de ces lois fini-

dimensionnelles est consistante, le Théorème 1.4 de consistance de Kolmogorov (attention

l’espace des états est R, non pas E) assurera alors que le processus (I(f))f∈Lα(E) est bien

défini.

Théorème 4.22 Etant données f1, · · · , fd appartenant à Lα(E), nous définissons la loi de

probabilité P(f1,··· ,fd) sur Rd, par sa fonction caractéristique, en posant F = (f1, · · · , fd),

∀ Θ = (θ1, · · · , θd) ∈ Rd : φF (Θ) = exp

−∫
E

∣∣∣∣∣∣
d∑
j=1

θjfj(x)

∣∣∣∣∣∣
α

dm(x)

 . (4.8)

Alors, il existe un processus (I(f))f∈Lα(E) dont les lois fini-dimensionnelles sont les lois de

probabilité P(f1,··· ,fd) de fonction caractéristique φ(f1,··· ,fd).

De plus, pour tout f appartenant à Lα(E) :

I(f) suit la loi SαS(σ), où : σ =

(∫
E
|f |αdm

) 1
α

.
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Preuve du théorème 4.22 : Montrons en effet que φ(f1, ··· ,fd) est la fonction caractéristique

d’une loi stable surRd. Il va falloir pour cela effectuer un changement de variable transformant

cette intégrale sur E en une autre sur Sd.

Notons que m n’est pas nécessairement la mesure spectrale d’une loi α-stable, car E n’est pas

a priori égal à Sd. Cependant, l’avantage de la relation (4.8) est que la mesure m est utilisée

quels que soient d et les fonctions f1, · · · , fd dans Lα(E).

Posons F = (f1, · · · , fd), et pour tout Θ = (θ1, · · · , θd) appartenant à Rd :

u(Θ, F (x)) =

∣∣∣∣∣∣
d∑
j=1

θjfj(x)

∣∣∣∣∣∣
α

, et : E+ =

x ∈ E |
d∑
j=1

f2
j (x) > 0

 . (4.9)

Alors, E+ appartient à E , Et alors si x appartient à E\E+, par l’inégalité de Cauchy-Schwarz :∣∣∣∣∣∣
d∑
j=1

θjfj(x)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
d∑
j=1

θ2
j

∣∣∣∣∣∣
1
2
∣∣∣∣∣∣
d∑
j=1

f2
j (x)

∣∣∣∣∣∣
1
2

= 0.

Ainsi :

φF (Θ) = exp

[
−
∫
E
u(Θ, F (x))dm(x)

]
= exp

[
−
∫
E+

u(Θ, F (x))dm(x)

]

= exp

−
∫
E+

u

Θ,

 d∑
j=1

fj(x)

− 1
2

× F (x)

×
 d∑
j=1

fj(x)

α
2

dm(x)


= exp

[
−
∫
E+

u(Θ, G(x))

]
dm1(x),

où G = (g1, · · · , gd), telle que pour tout 1 ≤ j ≤ d, et pour tout x appartenant à E+ :

gj(x) =
fj(x)(

d∑
k=1

f2
k (x)

) 1
2

, et pour tout x appartenant à E \ E+ : gj(x) = 0, et où m1 est la

mesure sur (E, E) définie par : m1 =

 d∑
j=1

f2
k

α
2

·m

m1 est une mesure finie car chaque fk appartient à Lα(E).

De plus, pour tout x appartenant à E+ :

d∑
j=1

g2
j (x) = 1.

Nous effectuons alors le changement de variable :

s = (s1, · · · , sd) = (g1(x), · · · , gd(x)) = G(x).
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Alors : x ∈ E+ ⇐⇒ (s1, · · · , sd) ∈ Sd. Et nous avons, pour tout Θ appartenant à Rd :

φF (Θ) = exp

−∫
Sd

∣∣∣∣∣∣
d∑
j=1

θjsj

∣∣∣∣∣∣
α

dΓ(s)

 ,

où Γ est la mesure finie sur (Sd,Bor(Sd)) telle que, pour tout A dans Bor(Sd) :

Γ(A) =

∫
E+

1G−1(A)(x)dm1(x), où : G−1(A) = {x ∈ E+ | G(x) ∈ A}. (4.10)

Le Théorème 4.9 nous dit alors que cette fonction φF est bien la fonction caractéristique

d’une loi symétrique α-stable sur Rd.

Enfin, pour la consistance de la famille des lois P(f1,··· ,fd) :

— Pour toute permutation σ dans Sd : pour tout Θ = (θ1, · · · , θd) dans Rd :

φ(fσ(1),··· ,fσ(d))(θσ(1), · · · , θσ(d)) = exp

−∫
Sd

∣∣∣∣∣∣
d∑
j=1

θσ(j)sσ(j)

∣∣∣∣∣∣
α

dΓ(s)


= exp

−∫
Sd

∣∣∣∣∣∣
d∑
j=1

θjsj

∣∣∣∣∣∣
α

dΓ(s)

 = φ(f1,··· ,fd)(θ1, · · · , θd).

— Si 1 ≤ d′ < d, pour tout f1, · · · , fd dans Lα(E), pour tout (θ1, · · · , θd′) dans Rd
′
, en

posant θd′+1 = 0, · · · , θd = 0 :

φ(f1,··· ,fd′ )(θ1, · · · , θd′) = exp

−∫
E

∣∣∣∣∣∣
d′∑
j=1

θjfj(x)

∣∣∣∣∣∣
α

dm(x)


= exp

−∫
E

∣∣∣∣∣∣
d∑
j=1

θjfj(x)

∣∣∣∣∣∣
α

dm(x)


= φ(f1,··· ,fd)(θ1, · · · , θd′ , 0, · · · 0).

Enfin, si f appartient à Lα(E), alors I(f) a pour fonction caractéristique, pour tout θ réel :

φf (θ) = exp

[
−
∫
E
|θ|α|f |αdm

]
= exp

[
−|θ|α

∫
E
|f |αdm

]
,

qui est bien la fonction caractéristique de la loi d’une variable aléatoire réelle SαS de pa-

ramètre σ =

(∫
E
|f |αdm

) 1
α

. �
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Définition 4.23 Pour tout f appartenant à Lα(E, E ,m), on appelle intégrale α-stable la

variable aléatoire I(f).

Propriétés 4.24 Le processus (I(f))f∈Lα(E) admet une propriété de linéarité P-presque

sûre, c’est-à-dire :

∀ f1, f2 ∈ Lα(E),∀ a1, a2 ∈ R : I(a1f1 + a2f2) = a1I(f1) + a2I(f2),P-ps.

Preuve de la propriété 4.24 : Pour tout θ réel :

E {iθ [I (a1f1 + a2f2)− a1I(f1)− a2I(f2)]}

= E {i [θI (a1f1 + a2f2)− (a1θ)I(f1)− (a2θ)I(f2)]}

= φ(a1f1+a2f2,f1,f2)(θ,−a1θ,−a2θ)

= exp

[
−
∫
E
|θa1f1(x) + θa2f2(x)− θa1f1(x)− θa2f2(x)|α dm(x)

]
= 1.

Ainsi, la variable I(a1f1 + a2f2)− a1I(f1)− a2I(f2) est nulle, et alors P-presque sûrement :

I(a1f1 + a2f2) = a1I(f1) + a2I(f2).

�

4.4 Mesure aléatoire symétrique stable

Encore une fois dans cette section, nous suivons toujours le livre de Taqqu-Samorodnitsky

[2], en adaptant les résultats et démonstrations au cas symétrique uniquement.

Considérons toujours un espace mesuré (E, E ,m). Notons : E0 = {A ∈ E | m(A) < +∞}.
Et notons L0(Ω) l’espace des variables aléatoire réelles sur Ω.

Définition 4.25 Soit M : E0 −→ L0(Ω).

— On dit que M est indépendamment dispersée si pour tout entier naturel k non nul, et

pour tous A1, · · · , Ak appartenant à E0 et deux à deux disjoints, les variables aléatoires

M(A1), · · ·M(Ak) sont indépendantes.

— On dit M est σ-additive si pour toute suite (Aj)j≥1 d’éléments deux à deux disjoints

de E0 tels que

+∞⋃̇
j=1

Aj appartient encore à E0, on a :

M

+∞⋃̇
j=1

Aj

 =

+∞∑
j=1

M(Aj), P-ps.
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— Soit 0 < α ≤ 2. M est une mesure aléatoire symétrique α-stable (encore notée SαS)

si M est indépendamment dispersée, σ-additive et telle que :

∀ A ∈ E0 : M(A) suit la loi SαS(σ), où : σ = (m(A))
1
α . (4.11)

Proposition 4.26 Considérons le processus SαS (I(f))f∈Lα(E) du Théorème 4.22, alors :

M :

{
E0 −→ L0(Ω)

A 7−→ I(1A)
est une mesure aléatoire SαS.

Preuve de la proposition 4.26 :

— Pour tout A dans E0, la norme Lα(E) de la fonction 1A est bien sûr (m(A))
1
α . Et le

Théorème 4.22 assure que M(A) = I(1A) suit la loi SαS(σ), où σ = (m(A))
1
α .

— Montrons l’indépendance dispersée. Soient k dans N∗, et A1, · · · , Ak dans E0, deux à

deux disjoints.

Calculons la fonction caractéristique du vecteur aléatoire (I(1A1), · · · , I(1Ak)) égal

au vecteur (M(A1), · · · ,M(Ak)). Pour tout (θ1, · · · , θk) appartenant à Rk, et pour

tout x appartenant à E, les Aj étant deux à deux disjoints :∣∣∣∣∣∣
k∑
j=1

θj1Aj (x)

∣∣∣∣∣∣
α

=


|θ1|α, si x ∈ A1

· · · · · · · · ·

|θk|α, si x ∈ Ak

=
k∑
j=1

|θj |α 1Aj (x).

Ainsi :

E

i k∑
j=1

θjM(Aj)

 = exp

−∫
E

∣∣∣∣∣∣
k∑
j=1

θj1Aj (x)

∣∣∣∣∣∣
α

dm(x)


= exp

−∫
E

k∑
j=1

|θj |α 1Aj (x)dm(x)


=

k∏
j=1

exp

[
−
∫
E
|θ|α11j (x)dm(x)

]
=

k∏
j=1

exp [iθjM(Aj)] ,

ce qui montre l’indépendance des variables aléatoires M(A1), · · · ,M(Ak).

— L’additivité pour des familles finies d’éléments de E0 deux-à-deux disjoints A1, · · · , Ak
est assurée par la linéarité (P-presque sûre) de l’intégrale symétrique stable, le fait

que : 1( k⋃̇
j=1

Aj

) =
k∑
j=1

1Aj .
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Soit à présent une suite (Aj)j≥1 d’éléments deux à deux disjoints de E0 tels que

A =

+∞⋃̇
j=1

Aj appartient encore à E0.

Nous devons montrer que :

M(A) =

+∞∑
j=1

M(Aj)

= lim
n→+∞

n∑
j=1

M(Aj)

 , P-ps.

Les variables aléatoires M(Aj) étant indépendantes, le Théorème 1.1 de Paul Lévy que

la convergence P-presque sûre de la série
∑
j≥1

M(Aj) est équivalente à sa convergence

en probabilité. Nous allons prouver sa convergence en probabilité.

Grâce à l’additivité pour les familles finies d’éléments de E0 deux à deux disjoints,

d’une part :

n∑
j=1

M(Aj) = M

 n⋃̇
j=1

Aj

 , P-ps. (4.12)

D’autre part :

+∞⋃̇
j=n+1

Aj ∈ E0, car :

+∞⋃̇
j=n+1

Aj ⊂ A, donc :

M(A) = M

 n⋃̇
j=1

Aj

+M

 +∞⋃̇
j=n+1

Aj

 , P-ps. (4.13)

Par conséquent, combinant les égalités (4.12) et (4.13), nous avons P-presque sûrement :

M(A)−
n∑
j=1

M(Aj) = M(A)−M

 n⋃̇
j=1

Aj

 = M

 +∞⋃̇
j=n+1

Aj

 .

Or, m est σ-additive et alors :

M

 +∞⋃̇
j=n+1

Aj

 suit la loi SαS(σn), où : σαn = m

 +∞⋃̇
j=n+1

Aj

 =
+∞∑

j=n+1

m(Aj).

Comme σn −−−−−→
n→+∞

0, alors, d’après l’inégalité de Markov dans l’espace Lα(Ω), pour

tout ε > 0 :

P

 ∣∣∣∣∣∣M
 +∞⋃̇
j=n+1

Aj

∣∣∣∣∣∣ > ε

 ≤ σαn
εα
−−−−−→
n→+∞

0,
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donc : M

(
+∞⋃̇

j=n+1
Aj

)
P−−−−−→

n→+∞
0.

Et alors, l’égalité P-presque sûre (4.4) nous donne :

M(A)−M

 n⋃̇
j=1

Aj

 P−−−−−→
n→+∞

0,

ce qui prouve la σ-additivité de M.

�

4.5 Définition constructive de l’intégrale symétrique stable

L’intégrale α-stable a été définie dans la section 4.3 comme un processus stochastique indexé

sur la famille d’intégrandes f.

Dans cette section, nous allons montrer que I(f) peut aussi être construite comme une au-

thentique intégrale qui sera notée

∫
E
f(x)dM(x), où M est une mesure aléatoire symétrique

stable. La méthode classique, nous allons approximer f par une suite de fonctions (fn)≥1

simples (ne prenant qu’un nombre fini de valeurs), et dont la définition de leur intégrale∫
E
fn(x)dM(x) est facile. Et nous prendrons la limite en probabilité (comme l’intégrale de

Wiener). Nous montrons finalement que l’intégrale définie dans la section 4.3 et celle que

nous aurons définie correspondent.

Considérons toujours un espace mesuré (E, E ,m). Notons : E0 = {A ∈ E | m(A) < +∞}.
Et notons L0(Ω) l’espace des variables aléatoire réelles sur Ω.

Soient enfin un réel α appartenant à ]0, 2], l’espace de Lebesgue Lα(E, E ,m) et une mesure

aléatoire symétrique M α-stable définie sur E0.

Soit la fonction usuelle f de la forme f(x) =
d∑
j=1

cj1Aj , où les Aj pour 1 ≤ j ≤ d appartiennent

à E0 et sont deux à deux disjoints.

Nous définissons :

I(f) =

∫
E
f(x)dM(x) =

d∑
j=1

cjM(Aj). (4.14)

Comme M est indépendamment dispersée et σ-additive, les variables aléatoires symétriques

stables M(Aj) sont indépendantes.

Utilisant la Propriété 3.13 (i) et (iii) à d variables stables indépendantes et dans le cas
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symétrique, nous obtenons :

I(f) suit la loi Sα(σf , 0, 0), où : σf =

 d∑
j=1

cαjm(Aj)

 1
α

=

(∫
E
|f |αdm

) 1
α

.

L’intégrale I(f) est clairement linéaire pour les fonctions simples.

Considérons maintenant f appartenant à Lα(E). Alors nous savons qu’il existe une suite de

fonctions simples (fn)n≥1 telle que : fn
m−pp−−−−→
n→∞

f

∃g ∈ Lα(E) | ∀n ≥ 1,∀x ∈ E : |fn(x)| ≤ g(x).
(4.15)

Une telle suite de fonctions simples existe :

fn(x) =

n2−1∑
j=0

(
j

n
1f−1([ jn ; j+1

n [)(x) +

(
− j
n

)
1f−1([− j+1

n
;− j

n [)(x)

)
(cette suite est majorée par g = |f |.)
La suite (I(fn))n≥1 est alors bien définie, et nous allons montrer qu’elle converge en proba-

bilité. Nous allons montrer qu’elle est de Cauchy en probabilité.

Soient n, k des entiers naturels non nuls. Alors, par linéarité de I pour les fonctions simples :

I(fn)− I(fk) = I(fn − fk), qui suit la loi Sα(σn,k, 0, 0), où : σn,k =

(∫
E
|fn − fk|αdm

) 1
α

.

La suite (I(fn))n≥1 est alors de Cauchy en probabilité et donc converge en probabilité, si l’on

parvient à prouver que σn,k tend vers 0 quand n et k tendent vers +∞.
Nous avons, pour tout x appartenant à E : |fn(x) − fk(x)| ≤ 2g(x), et donc la convergence

dominée donne : σn,k −−−−−−→
n,k→+∞

0.

Soit une autre suite (gn)n≥1 vérifiant la relation (4.15), convergente donc m-pp vers f. Nous

allons prouver que la limite en probabilité de la suite (I(fn))n≥1.

Soit hn =

{
fk, si : n = 2k

gk, si : n = 2k − 1
.

Alors (I(hn))n≥1 converge en probabilité vers une variable aléatoire H, les suites (I(fk))k≥1,

et (I(gk))k≥1 convergent en probabilité respectivement vers disons F et G, alors ces deux

dernières suites étant des sous-suites de la suite (I(hn))n≥1, par unicité des limites en proba-

bilité, nous avons : F = H = G.
Nous définissons alors I(f) comme étant la limite en probabilité de la suite des variables α-

stables symétriques I(fn)n≥1 où (fn)n≥1 est une suite de fonction simples vérifiant la relation
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(4.15) (cette limite en probabilité, ainsi, ne dépend pas de la suite (fn)n≥1 choisie vérifiant

la relation (4.15)).

La convergence en loi implique la convergence en loi. De plus, pour tout θ réel :

E [exp (iθI(fn))] = exp

[
−|θ|α ×

(∫
E
|fn|αdm

)]
−−−−−→
n→+∞

exp

[
−|θ|α ×

(∫
E
|f |αdm

)]
,

qui est la fonction caractéristique de la loi Sα(σf , 0, 0), où σf =

(∫
E
|f |αdm

) 1
α

.

Ainsi : I(f) suit la loi Sα(σf , 0, 0), où σf =

(∫
E
|f |αdm

) 1
α

. Donc I(f) et I(f) définie dans

la section 4.3 sont égales.

Nous retrouvons la linéarité de l’intégrale, en effet, soient f, g appartenant à Lα(E), et soient

(fn)n≥1, (gn)n≥1 deux suites convergentes m-presque partout respectivement vers f et g et

vérifiant la condition (4.15) (notons θ1 et θ2 les fonctions dominant respectivement (fn)n≥1

et (gn)n≥1).

Soient a, b deux réels, et soit h = af + bg, hn = afn + bgn. Alors, hn converge simplement

vers h, et pour tout x appartenant à E, et pour tout n ≥ 1 :

|hn(x)| ≤ |a||fn(x)|+ |b||gn(x)| ≤ |a|θ1(x) + |b|θ2(x).

Alors, les limites écrites ci-dessous sont en probabilité :

I(h) = lim
n→+∞

I(hn)

= lim
n→+∞

aI(fn) + bI(gn)

= a lim
n→+∞

I(fn) + b lim
n→+∞

I(gn)

= aI(f) + bI(g).

La linéarité de l’intégrale ainsi construite et le fait que pour tout f appartenant à Lα(E),

I(f) suit la loi SαS(σf ), où σf =

(∫
E
|f |αdm

) 1
α

, nous permet de retrouver :

Proposition 4.27 Pour tous f1, · · · , fd appartenant à Lα(E),

i) La fonction caractéristique du vecteur aléatoire dans Rd : (I(f1), · · · , I(fd)) est

donnée par la relation (4.8)

ii) Le vecteur aléatoire dans Rd : (I(f1), · · · , I(fd)) est un vecteur SαS ayant pour

mesure spectrale Γ donnée par la relation (4.10).

Enfin, la proposition suivante relie la convergence d’une suite d’intégrales symétriques α-

stables à la convergence de la suite des intégrandes :
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Proposition 4.28 Soit, pour tout entier j ≥ 1 : Xj =

∫
E
fj(x)dM(x), et soit X =

∫
E
f(x)dM(x),

où M est une mesure aléatoire SαS dans l’espace (E, E ,m). Alors :

Xj
P−−−−→

j→+∞
X ⇐⇒ lim

j→+∞

∫
E
|fj − f |αdm = 0. (4.16)

Preuve de la proposition 4.28 :

Nous avons : Xj
P−−−−→

j→+∞
X ⇐⇒ Xj −X

P−−−−→
j→+∞

0.

Or, par linéarité de l’intégrale stable : Xj−X suit la loi SαS(σj) où σj =

(∫
E
|fj − f |αdm

) 1
α

.

Donc la convergence en probabilité de (Xj)j≥1 vers X équivaut à la convergence vers 0 de la

suite (σj)j≥1.

�

Example 4.29 Présentons une autre construction du processus de Lévy α-stable.

Considérons, pour tout t ≥ 0 :

Xt =

∫ +∞

0
1[0,t](x)dM(s) =

∫ t

0
dM(x), (4.17)

où M est une mesure SαS sur l’espace ([0,+∞[,Bor([0,+∞[, λ)) (λ désignant la mesure de

Lebesgue (restreinte à [0,+∞[)).

Alors X0 = 0, P-ps. Et par linéarité de l’intégrale stable, pour tous 0 ≤ s ≤ t :

X(t)−X(s) =

∫ t

s
dM(x) = M([s, t]), qui suit la loi Sα

(
|t− s|

1
α , 0, 0

)
.

Alors, si 0 ≤ t1 < t2 < · · · < tn, alors :

(X(t2)−X(t1), X(t3)−X(t2), · · · , X(tn)−X(tn−1)) =

(∫ t2

t1

dM(x), · · · ,
∫ tn

tn−1

dM(x)

)
.

Les composantes de ce vecteurs sont donc des lois SαS indépendantes, puisque les inter-

valles [tj−1, tj [, pour tout j compris entre 2 et n, sont deux à deux disjoints (M étant

indépendamment dispersée).

Ainsi ce processus vérifie toutes les propriétés caractérisant le processus de Lévy α-stable

symétrique présenté dans l’exemple 4.21. Il est donc bien égal au processus de Lévy α-stable

symétrique construit dans cet exemple 4.21.
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Remarque 4.30 Voici à présent le théorème de représentation intégrale dans Rd, expliquant

qu’un vecteur SαS dans Rd est égal en loi à un vecteur aléatoire dans Rd dont toutes les

composantes sont des intégrales stables (par rapport à la même mesure stable définie sur le

même espace mesuré (E, E ,m).)

Théorème 4.31 (de représentation sur Rd) Soit X = (X1, · · · , Xd) un vecteur SαS

dans Rd.

Alors,

X
L
=

(∫
Sd

s1dM(s), · · · ,
∫
Sd

sddM(s)

)
, (4.18)

où M est une mesure SαS sur l’espace mesuré (Sd,Bor(Sd),Γ), où Γ est la mesure spectrale

du vecteur (X1, · · · , Xd).

Preuve du théorème 4.31 : Le Théorème 4.13 nous donne la représentation suivante que

nous qualifierons de ”spectrale”, pour un vecteur SαS.

Il existe un mesure finie Γ sur (Sd,Bor(Sd)) telle que, pour tout Θ = (θ1, · · · , θd) dans Rd,

la fonction φX caractéristique du vecteur X est définie par :

φX(Θ) = exp

−∫
Sd

∣∣∣∣∣∣
d∑
j=1

θjsj

∣∣∣∣∣∣
α

dΓ(s)

 . (4.19)

La Proposition 4.27 nous dit alors que la fonction caractéristique ci-dessus est celle du

vecteur

(∫
Sd
s1dM(s), · · · ,

∫
Sd
sddM(s)

)
, où M est une mesure SαS sur l’espace mesuré

(E, E ,m) = (Sd,Bor(Sd),Γ), la mesure spectrale Γ pour ce dernier vecteur aléatoire étant

donc la même que celle dans la relation (4.19)). Les fonctions caractéristiques de ces deux

vecteurs étant égales :

X
L
=

(∫
Sd

s1dM(s), · · · ,
∫
Sd

sddM(s)

)
.

�

4.6 Mesure et intégrale aléatoires stables complexes

Les deux sections précédentes peuvent être adaptées au cas complexe, comme suit :

Définition 4.32 Soit α appartenant à ]0, 2][. On considère un espace mesuré (E, E ,m).

Et soit E0 = {A ∈ E | m(A) < +∞}.
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Une mesure isotrope complexe symétrique α-stable sur E0 de mesure de contrôle m est une

fonction :

M̃α : E0 →  L0
C(Ω,F ,P),

et qui vérifie les propriétés suivantes :

i) M̃α est indépendamment dispersée.

ii) M̃α est additive.

iii) M̃α est isotrope (invariante par rotation), c’est-à-dire : pour tout θ appartenant à

[0, 2π[:

eiθM̃α
L
= M̃α.

(égalité en lois de processus, ie : égalité vraie pour toutes les lois fini-dimensionnelles).

iv) Pour tout A appartenant à E0, M̃α(A) est une mesure complexe isotrope SαS de

paramètre σ = (m(A))
1
α .

Remarque 4.33

— Notons que (i) signifie que pour tout entier n ≥ 1, et pour tous A1, · · · , An appartenant

à E0, deux à deux disjoints, l’indépendance des variables Ãα(A1), · · · , M̃α(An) signifie

l’indépendance des vecteurs :Re
(
M̃α(A1)

)
Im
(
M̃α(A1)

)
 , · · · ,

Re
(
M̃α(A1)

)
Im
(
M̃α(A1)

)


— Pour tout A appartenant à E0, la fonction caractéristique ψ
M̃α(A)

, est donnée, pour

tout z appartenant à C, par la relation :

ψ
M̃α(A)

(z) = E
[
exp

(
i Re(zM̃α(A))

)]
= e−m(A)|z|α .

En particulier, la variable aléatoire réelle Re(M̃α) est SαS de paramètre σ aussi égal

à (m(A))
1
α .

— On peut alors construire une intégrale stochastique par rapport à une mesure aléatoire

complexe symétrique stable isotrope. On commence par les fonctions simples : pour

tout n ≥ 1, et pour tous A1, · · · , An appartenant à E0, deux à deux disjoints, et pour

tous a1, · · · , an complexes :

∀ x ∈ E, f(x) =
n∑
k=1

ak1Ak(x),

64



on définit l’intégrale de cette manière :∫
E
f(x)dM̃α(x) =

n∑
k=1

akM̃α(Ak). (4.20)

Cette intégrale I(f) =

∫
E
f(x)dM̃α(x) est une mesure SαS complexe isotrope. Sa

fonction caractéristique est égale pour tout z complexe à :

ψI(f)(z) = exp

(
−

(
n∑
k=1

|ak|αm(Ak)

)
|z|α

)
.

Utilisant un argument de densité, l’intégrale peut être étendue à une fonction f ap-

partenant à LαC(E, E ,m). Nous obtenons/admettons alors :

Proposition 4.34 Soit M̃α une mesure complexe symétrique α-stable isotrope sur l’espace

mesuré (E, E ,m), alors :

i) Pour tout f appartenant à LαC(E), l’intégrale L(f) =

∫
E
g(x)d(x) est une variable

aléatoire complexe SαS(σf ) isotrope, de paramètre σf = ‖f‖Lα(E) et donc de fonction

caractéristique, pour tout z complexe :

ψI(f)(z) = exp

(
−

(
n∑
k=1

|ak|αm(Ak)

)
|z|α

)
. (4.21)

ii) Linéarité : pour toutes fonction f, g appartenant à LαC(E), et pour tous a, b complexes,

l’égalité :∫
E

(af(x) + bg(x))dM̃α(x) = a

∫
E
f(x)dM̃α(x) + b

∫
E
g(x)dM̃α(x),

est P-presque sûre.

iii) Pour tout f appartenant à LαC(E), Re

(∫
E
f(x)dM̃α(x)

)
et Im

(∫
E
f(x)dM̃α(x)

)
sont deux variables aléatoires réelles suivant à deux la même loi SαS(σf ) où σf = ‖f‖Lα

C
(E).

iv) Soient (fn)n≥1 une suite de fonctions et soit f une fonction appartenant toutes à

LαC(E). Alors :

Re

(∫
E
fn(x)dM̃α(x)

)
P−−−−−→

n→+∞
Re

(∫
f
(x)dM̃α(x)

)
⇐⇒ fn

LαC(E)
−−−−−→
n→+∞

f.

5 Serie de Le Page pour les processus SαS définis par des

intégrales

5.1 Série de Le Page de mesures et intégrales aléatoires SαS

Nous allons étudier le cas des mesures SαS.
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Théorème 5.1 Soit M une mesure aléatoire SαS sur un espace mesuré fini (E, E ,m). No-

tons la mesure de probabilité :

m̂ =
m

m(E)
.

Soit (Γj)j≥1 la suite des instants d’arrivée d’un processus de Poisson d’intensité égale à

1. Et soit la suite de vecteurs indépendants et identiquement distribués ((Vj , γj))j≥1, et

indépendante de la suite (Γj)j≥1, telle que :

i) Tous les Vj ont pour loi de probabilité m̂ sur E.

ii) Pour tout j ≥ 1 : P (γj = 1 | Vj) = P (γj = −1 | Vj) =
1

2
.

Alors (l’égalité ci-dessous est une égalité en termes de loi de processus) :

(M(A))A∈E
L
=

[cαm(E)]
1
α

+∞∑
j=1

γjΓ
− 1
α

j 1(Vj∈A)


A∈E

. (5.1)

Preuve du théorème 5.1 : Fixons A ∈ E , et soient pour tout j ≥ 1 : W
(A)
j = γj1(Vj∈A).

Alors grâce aux hypothèses (i) et (ii), les variables W
(A)
j sont i.i.d centrée et prennent toutes

comme valeurs exactement −1, 0, et 1 et vérifiant :

E
[ ∣∣∣W (A)

1

∣∣∣α] = P(V1 ∈ A) = m̂(A).

En effet, l’indépendance provient du fait que Wj est une fonction (la même pour chaque j) des

composantes du vecteur (γj , Vj), et l’hypothèse (i) nous disant que les vecteurs (γj , Vj) étant

indépendantes identiquement distribuées, alors les W
(A)
j sont indépendantes identiquement

distribuées. Et elles prennent toutes comme valeurs −1, 0 et 1, car grâce à l’hypothèse (ii) :

∗P
(
W

(A)
j = 0

)
= P(γj ∈ {−1, 1} | Vj /∈ A)× P(Vj /∈ A)

= P(Vj /∈ A),

∗P
(
W

(A)
j = −1

)
= P[(γj = −1) ∩ (Vj ∈ A)]

= P(γj = −1 | Vj ∈ A)× P(Vj ∈ A) =
P(Vj ∈ A)

2
,

∗P
(
W

(A)
j = 1

)
= P[(γj = 1) ∩ (Vj ∈ A)]

= P(γj = 1 | Vj ∈ A)× P(Vj ∈ A) =
P(Vj ∈ A)

2
.

Elles sont centrées, par un calcul simple (ou bien, on a pu observé qu’elles sont symétriques) :

E
(
W

(A)
j

)
= 1× P(Vj ∈ A)

2
+ (−1)× P(Vj ∈ A)

2
+ 0× P(Vj /∈ A) = 0.

Et le calcul du moment d’ordre α :

E
(∣∣∣W (A)

j

∣∣∣α) = 1× P(Vj ∈ A)

2
+ | − 1| × P(Vj ∈ A)

2
+ 0× P(Vj /∈ A) = P(Vj ∈ A) = m̂(A).
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D’après le Corollaire 3.39, la série
∑
j≥1

W
(A)
j Γ

− 1
α

j =
∑
j≥1

γjΓ
− 1
α

j 1(Vj∈A) converge P-presque

sûrement vers une variable aléatoire Sα(σA, 0, 0), où σαA =
m̂(A)

cα
.

Dès lors, grâce à la Propriété 3.13 (iii), la variable aléatoire M̃(A) définie par :

M̃(A) = (cαm(E))
1
α

+∞∑
j=1

γjΓ
− 1
α

j 1(Vj∈A), (5.2)

suit la loi Sα(σ̃A, 0, 0), où σ̃αA = (cαm(E))× σA = m(A).

Ainsi M(A) possède la même loi que M̃(A).

Il reste à prouver que les lois fini-dimensionnelles des processus (M(A))A∈E et (M̃(A))A∈E

correspondent.

Soient A1, · · · , Ad appartenant à E et deux à deux disjoints. Nous devons montrer que :

(M(A1), · · · ,M(Ad))
L
=
(
M̃(A1), · · · , M̃(Ad)

)
. (5.3)

Soient θ1, · · · , θd des réels, alors grâce à l’égalité (5.2) :

d∑
k=1

θkM̃(Ak) = (cαm(E))
1
α

+∞∑
j=1

[
γjΓ
− 1
α

j

(
d∑

k=1

θk1(Vj∈Ak)

)]
. (5.4)

Considérons, pour tout j ≥ 1, Wj = γj

d∑
k=1

θk1(Vj∈Ak) =
d∑

k=1

θkW
(Ak)
j , alors la suite (Wj)j≥1

est indépendante identiquement distribuée, encore centrée car les W
(Ak)
j , j variant, sont

indépendantes identiquement distribuées et sont symétriques. Et, comme les Ak sont deux à

deux disjoints :

E (|W1|α) =

d∑
k=1

|θk|αP(V1 ∈ Ak) =

d∑
k=1

|θk|αm̂(Ak).

Dès lors, encore grâce au Corollaire 3.39 :
∑
j≥1

γjΓ
− 1
α

j

(
d∑

k=1

θk1(Vj∈Ak)

)
converge P-presque

sûrement et :

+∞∑
j=1

γjΓ
− 1
α

j

(
d∑

k=1

θk1(Vj∈Ak)

)
suit la loi Sα(σ, 0, 0), où σα = c−1

α

(
d∑

k=1

|θk|αm̂(Ak)

)
. (5.5)

De nouveau, étant données les égalités (5.4) et (5.5), grâce à la Propriété 3.13 (iii), la variable
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d∑
k=1

θkM̃(Ak) suit la loi Sα(σ′, 0, 0) où

(σ′)α = (cαm(E))σα =

d∑
k=1

|θk|αm(Ak).

D’autre part, M étant une mesure SαS, elle est indépendamment dispersée, et les M(Ak)

sont indépendantes et suivent la loi SαS(σk), où σαk = m(Ak). Les Propriétés 3.13 (i) et (iii)

donnent alors :

d∑
k=1

θkM(Ak) suit la loi Sα(σ′′, 0, 0), où : (σ′′)α =
d∑

k=1

|θk|αm(Ak) = (σ′)α.

Donc les combinaisons linéaires
d∑

k=1

θkM̃(Ak) et
d∑

k=1

θkM(Ak) ont la même loi SαS. Ce qui

clôt la démonstration.

�

Théorème 5.2 Soit M une mesure aléatoire SαS sur un espace mesuré fini (E, E ,m). No-

tons la mesure de probabilité :

m̂ =
m

m(E)
.

Soit (Γj)j≥1 la suite des instants d’arrivée d’un processus de Poisson d’intensité égale à

1. Et soient la suite de vecteurs indépendants et identiquement distribués ((Vj , γj))j≥1, et

indépendante de la suite (Γj)j≥1, telle que :

i) Tous les Vj ont pour loi de probabilité m̂ sur E.

ii) Pour tout j ≥ 1 : P (γj = 1 | Vj) = P (γj = −1 | Vj) =
1

2
.

Alors :

a) Pour toute fonction f appartenant à Lα(E), nous avons :

I(f) =

∫
E
f(x)dM(x)

L
= [cαm(E)]

1
α

+∞∑
j=1

γjΓ
− 1
α

j f(Vj)

b) Nous avons l’égalité en lois de processus :

(I(f))f∈Lα(E)
L
= [cαm(E)]

1
α

 +∞∑
j=1

γjΓ
− 1
α

j f(Vj)


f∈Lα(E)

Preuve du théorème 5.2 :
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a) Soit f appartenant à Lα(E), alors pour tout j ≥ 1, f(Vj) appartient à Lα(E), car,

par le théorème de transfert :∫
Ω
|f(Vj)|α(ω)dP(ω) =

∫
E
|f(v)|αdm̂(v) =

1

m(E)

∫
E
|f(v)|αdm(v) =

‖f‖αLα(E)

m(E)
.

(5.6)

Alors, de nouveau (γjf(Vj))j≥1 est une suite de variables symétriques indépendantes

identiquement distribuées et possèdant un moment d’ordre α, (la démonstration est

analogue à celle faite dans le Théorème 5.1) alors d’après le Corollaire 3.39 :

[cαm(E)]
1
α

n∑
j=1

γjΓ
− 1
α

j f(Vj)
n→+∞−−−−−→
P−ps

S(f),

où S(f) suit la loi S(σ′f , 0, 0), avec σ′f =
‖f‖Lα(E)

[cαm(E)]
1
α

[cαm(E)]
1
α = ‖f‖Lα(E), Et donc

également : I(f)
L
= S(f).

b) Nous allons à présent prouver que les lois fini-dimensionnelles correspondent. Soit

d ≥ 1, et soient f1, · · · , fd dans Lα(E). Alors, d’après la Proposition 4.24, nous avons,

pour tous réels a1, · · · , ad,
d∑

k=1

akfk(Vj) appartient à Lα(E), et :

d∑
k=1

akI(fk)
P−ps

= I

(
d∑

k=1

akfk

)
, (5.7)

Et alors, I

(
d∑

k=1

akfk

)
suit la loi Sα(Σ, 0, 0), où Σ =

∥∥∥∥∥
d∑

k=1

akfk

∥∥∥∥∥
Lα(E)

. D’autre part,

nous avons :

d∑
k=1

akS(fk)
L
= S

(
d∑

k=1

akfk

)
, qui suit aussi la loi S(Σ, 0, 0). (5.8)

En effet, les variables aléatoires Vj pour tout j ≥ 1 sont indépendantes identiquement

distribuées, alors les variables

d∑
k=1

akfk(Vj) sont elles aussi indépendantes identique-

ment distribuées, et ont un moment d’ordre α, en appliquant la relation (5.6), à la

variable
d∑

k=1

akfk(Vj).

Alors, encore une fois les variables : γj

d∑
k=1

akfk(Vj), pour tout j ≥ 1, sont indépendantes
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identiquement distribuées symétriques ayant un moment d’ordre α également, et

d’après le Corollaire 3.39 :

[cαm(E)]
1
α

n∑
j=1

γjΓ
− 1
α

j

(
d∑

k=1

akfk(Vj)

)
n→+∞−−−−−→
P−ps

S

(
d∑

k=1

akfk(Vj)

)
,

où S

(
d∑

k=1

akfk(Vj)

)
suit la loi S(Σ, 0, 0). (les calculs sont analogues à la fin de la

démonstration de (a))

Les relations (5.7) et (5.8) impliquent que : (S(f1), · · · , S(fd))
L
= (I(f1), · · · , I(fd)).

D’où l’égalité en loi de processus.

�

5.2 Séries de Le Page pour des processus complexes isotropes α-stables

Remarque 5.3

— Nous ne présentons pas ici la forme la plus générale du théorème ci-dessous (plusieurs

théorèmes plus généraux se trouvent dans Taqqu-Samorodnitsky [2]), nous présentons

une version où l’espace E est R. C’est cette version qui nous sera utile pour la section

suivante.

— Nous allons avoir besoin d’un lemme concernant l’invariance par rotation d’une va-

riable complexe, et présenté dans la thèse de Boutard [9]. Tout d’abord, remarquons

que si une variable aléatoire complexe Z = Re(Z)+ iIm(Z) est invariante par rotation

(pour tout θ appartenant à [0, 2π[ eiθZ
L
= Z), alors cela équivaut à l’égalité en lois de

vecteurs de R2, pour tout θ dans [0, 2π[:(
cos(θ)Re(Z)− sin(θ)Im(Z)

cos(θ)Im(Z) + cos(θ)Re(Z)

)
L
=

(
Re(Z)

Im(Z)

)
. (5.9)

Lemme 5.4 Si une variable aléatoire complexe Z = Re(Z) + iIm(Z) est invariante par

rotation, alors pour tout (a, b) dans R2 :

aRe(Z) + bIm(Z)
L
= ‖(a, b)‖Re(Z).

Preuve du lemme 5.4 : Notons v = (a, b).

— Si ‖v‖ = 0, alors a = b = 0. Et dans ce cas, le lemme est trivial. Supposons donc

‖v‖ = 0.
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— Si ‖v‖ = 1, alors il existe un unique θv dans [0, 2π[, tel que :

a = cos(θv), et b = − sin(θv).

La relation (5.9) donne alors :

cos(θv)Re(Z)− sin(θv)Im(Z) = aRe(Z) + bIm(Z)
L
= Re(Z) = ‖v‖Re(Z),

qui est bien l’égalité du lemme.

— Enfin si v est non nul quelconque, alors considérons ‖v‖−1v de norme 1, en appliquant

le second cas :

a

‖v‖
Re(Z) +

b

‖v‖
Im(Z)

L
= Re(Z)

×‖v‖
=⇒ aRe(Z) + bIm(Z)

L
= ‖(a, b)‖Re(Z).

�

Théorème 5.5 (représentation en série de Le Page des processus intégrals SαS complexe)

— Soit M̃α une mesure complexe α-stable invariante par rotation sur (R,Bor(R), λ), où

λ est la mesure de Lebesgue.

— Soit f : R2 → C, telle que pour tout réel t : f(t, ·) appartient à Lα(R).

Et soit alors : Xt =

∫ +∞

−∞
f(t, x)dM̃α(x).

— Soit ψ une mesure de probabilité de densité ϕ par rapport à la mesure de Lebesgue sur

R. Et soit (Zj)j≥1 une suite de variables aléatoires réelles indépendantes identiquement

distribuées ayant toutes pour loi de probabilité ψ.

— Soit (gj)j≥1 une suite de variables aléatoires complexes indépendantes identiquement

distribuées et invariantes par rotation telles que : E [|Re(g1)|α] = 1.

— La suite des instants d’arrivée (Γj)j≥1, d’un processus de Poisson d’intensité égale à

1, les suites (gj)j≥1 et (Zj)j≥1 sont indépendantes entre elles.

Alors :

i) La suite (Yn)n≥1 de processus définie pour n entier naturel non nul, pour tout réel t :

Yn(t) = cα

n∑
j=1

gjΓ
− 1
α

j [ϕ(Zj)]
− 1
α f(t, Zj) (5.10)

converge P-presque sûrement pour tout t vers une variable aléatoire Y (t).

ii) Le processus (Y (t))t∈R ainsi obtenu est égal, en lois de processus, à (X(t))t∈R.

Preuve du théorème 5.5 :
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i) Fixons le réel t. Pour tout j ≥ 1, considérons les variables aléatoires complexes :

Vj = gj [ϕ(Zj)]
− 1
α f(t, Zj).

Comme les Zj et les gj sont toutes indépendantes, alors les Vj sont indépendantes.

Ensuite toutes les Vj sont isotropes, puisque les gj le sont et sont indépendantes des

Zj , alors pour tout θ dans [0, 2π[:

eiθVj = eiθgj [ϕ(Zj)]
− 1
α f(t, Zj)

L
= gj [ϕ(Zj)]

− 1
α f(t, Zj) = Vj .

En effet, en passant par les fonctions caractéristiques, pour tout t réel, comme gj et

Zj sont indépendantes, et grâce au théorème de transfert, puisque pour tout x réel :

φeiθgj (x) = φgj (x), alors :

φeiθVj (t) =

∫
R

φeiθgj

[
tf(t, z)(ϕ(z))−

1
α

]
ϕ(z)dz

=

∫
R

φgj

[
tf(t, z)(ϕ(z))−

1
α

]
ϕ(z)dz = φVj (t)

Pour pouvoir utiliser le Théorème 4.17, il nous reste à montrer que :

E [|Re(Vj)|α] < +∞.

Soit FZ la sous-tribu de F engendré par les Zj : FZ = σ({Zj | j ≥ 1}). Et notons :

EZ l’espérance conditionnelle E[ · | FZ ]. En appliquant le Lemme 5.4, avec Z := gj ,

a := Re(f(t, Zj)), et b := Im(f(t, Zj)), conditionnellement par rapport à FZ :

Re(gjf(t, Zj)) = Re(f(t, Zj))Re(gj)− Im(f(t, Zj))Im(gj)
L
= |f(t, Zj)|Re(gj), (5.11)

l’égalité en loi présente étant l’égalité des lois conditionnelles de Re(gjf(t, Zj)) et

|f(t, Zj)|Re(gj) par rapport à FZ . Grâce à cette égalité (5.11), au fait que les gj et les

Zj sont indépendantes, que ϕ est la densité des chaque Zj , et que E(|Re(gj)|α) = 1,
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et que f(t, ·) appartient à Lα(R), nous obtenons :

E (|Re(Vj)|α) = E
{∣∣∣Re

[
gjϕ(Zj)

− 1
α f(t, Zj)

]∣∣∣α}
= E

{
[ϕ(Zj)]

−1 |Re [gjf(t, Zj)]|α
}

= E
{
EZ

[
[ϕ(Zj)]

−1 |Re [gjf(t, Zj)]|α
]}

= E
{
EZ

[
[ϕ(Zj)]

−1 |f(t, Zj)|α |Re(gj)|α
]}

= E
{

[ϕ(Zj)]
−1 |f(t, Zj)|α |Re(gj)|α

}
= E

{
[ϕ(Zj)]

−1 |f(t, Zj)|α
}
× E(|Re(gj)|α)

=

∫
R

|f(t, x)|αϕ(x)× [ϕ(x)]−1dx

= ‖f(t, ·)‖αLα(R).

Ainsi, d’après le Théorème 4.17, et sachant par le calcul précédent que :

E (|Re(Vj)|α) = ‖f(t, ·)‖αLα(R), la suite Yn définie par la relation (5.12) converge P-

presque sûrement vers une variable Y (t) α-stable invariante par rotation de paramètre :

σ = cα × c−1
α [E(|Re(V1)|α)]

1
α = ‖f‖Lα(R).

Par définition de l’intégrale stable

∫
R

f(t, x)dM̃α(x) possède la même loi que Y (t). Ce

qu’il fallait démontrer.

ii) La démonstration est analogue à celle du (b) du Théorème 5.2. Nous n’en écrirons pas

le détail.

�

Remarque 5.6 Nous avons un résultat analogue, pour des processus SαS définis par les

intégrales d’une famille de fonctions par rapport à une mesure aléatoires SαS sur l’espace

mesuré (R,Bor(R), λ). Voici l’énoncé :

Théorème 5.7 (représentation en série de Le Page des processus intégraux réels SαS)

— Soit M une mesure complexe α-stable symétrique sur (R,Bor(R), λ), où λ est la me-

sure de Lebesgue.

— Soit f : R2 → R, telle que pour tout réel t : f(t, ·) appartient à Lα(R).

Et soit alors : Xt =

∫ +∞

−∞
f(t, x)dM(x).
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— Soit ψ une mesure de probabilité de densité ϕ par rapport à la mesure de Lebesgue sur

R. Et soit (Zj)j≥1 une suite de variables aléatoires réelles indépendantes identiquement

distribuées ayant toutes pour loi de probabilité ψ.

— Soit (gj)j≥1 une suite de variables aléatoires réelles indépendantes identiquement dis-

tribuées et symétriques telles que : E [|Re(g1)|α] = 1.

— La suite des instants d’arrivée (Γj)j≥1, d’un processus de Poisson d’intensité égale à

1, les suites (gj)j≥1 et (Zj)j≥1 sont indépendantes entre elles.

Alors :

i) La suite (Yn)n≥1 de processus définie pour n entier naturel non nul, pour tout réel t :

Yn(t) = cα

n∑
j=1

gjΓ
− 1
α

j [ϕ(Zj)]
− 1
α f(t, Zj) (5.12)

converge P-presque sûrement pour tout t vers une variable aléatoire Y (t).

ii) Le processus (Y (t))t∈R ainsi obtenu est égal, en lois de processus, à (X(t))t∈R.

5.3 Utilisation des séries de Le Page

Cette section montre une utilisation majeure des séries de Le Page : l’obtention de versions

d’un processus (réel harmonisable) dont les trajectoires sont höldériennes. Pour faire l’exposé

de cette partie, j’ai étudié plusieurs articles, deux de Kôno-Maejima, un de Dozzi-Chevchenko,

puis enfin la thèse de Boutard. Les arguments étaient incomplets sur les deux premiers articles

pour des variantes de processus réel harmonisable fractionnaire et pour des résultats plus

faibles, celui de Dozzi-Chevchenko de même mais présentant le processus le plus général

(multifractionnaire) et le résultat le plus optimal mais une démonstration incomplète, et

dans la thèse de Boutard, [9] le cheminement le plus complet, mais pour un processus réel

harmonisable fractionnaire. Je présente alors une synthèse : une démonstration complète et

adaptée au processus stable réel harmonisable multifractionnaire, avec une optimisation des

conditions de continuité de la fonction de Hurst H.

Définition 5.8 Soient α un réel appartenant à ]1, 2[ et M̃α une mesure SαS complexe iso-

trope sur l’espace (R,Bor(R), λ).

— Soit H un réel appartenant à ]0, 1[

Un processus stable réel fractionnaire harmonisable de paramètre de Hurst H et d’in-

dice de stabilité α est un processus (ZH)t∈R tel que :

ZH(t) = Re

(∫
R

eitx − 1

|x|
1
α

+H
dM̃α(x)

)
. (5.13)
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— Soit maintenant une fonction H : R −→]0, 1[

Un processus stable réel multifractionnaire harmonisable de fonction de Hurst H, et

d’indice de stabilité α est un processus (Xt)t∈R tel que :

X(t) = Re

(∫
R

eitx − 1

|x|
1
α

+H(t)
dM̃α(x)

)
. (5.14)

Ainsi, pour tout réel t : X(t) = ZH(t)(t).

Théorème 5.9 Supposons que la fonction de Hurst H : R→]0, 1[, est telle que :

— Pour tout t réel :

0 < Ĥ = inf
t∈R

H(t) ≤ H(t) ≤ sup
t∈R

H(t) = H̃ < 1.

— La fonction H vérifie la propriété de continuité :

∃ cH > 0 | ∀ t, s ∈ R : |H(t)−H(s)| ≤ cH ð(|t− s|) (5.15)

où, pour tout δ > 0 : ð(δ) = δĤ (1 + | log(δ)|)
1
2( 2

α
−1) .

Alors, le processus stable réel harmonisable multifractionnaire X possède une version X̃ ayant

ses trajectoires γ-höldériennes, pour tout 0 < γ < Ĥ. Plus précisément, P-presque tout ω de

Ω, pour tout T > 0, et pour tout ε > 0 :

sup
s,t∈[−T,T ]


∣∣∣X̃(t, ω)− X̃(s, ω)

∣∣∣
|t− s|Ĥ (1 + | log(|t− s|)|)

1
α

+ 1
2

+ε

 < +∞. (5.16)

Commentaire 5.10 L’énoncé du théorème ci-dessus optimise le théorème exposé dans l’ar-

ticle de Dozzi et Chevchenko [8], qui lui donne juste comme hypothèse sur la fonction H

qu’elle soit γ-höldérienne pour un certain réel γ > H̃.

Remarque 5.11 Voici quelques remarques préliminaires.

— Considérons la fonction ϕε définie sur R par :

ϕε(x) =

{
cε|x|−1 [1 + | log(|x|)|]−1−ε , si x 6= 0

0, si x = 0
.
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Déterminons cε telle que ϕε soit une densité de probabilité.∫
R

ϕε(x)dx = 1⇐⇒ 2cε

∫ +∞

0

dx

x (1 + | log(x)|)1+ε = 1

⇐⇒ 2cε

∫ 1

0

dx

x (1− log(x))1+ε + 2cε

∫ +∞

1

dx

x (1 + log(x))1+ε = 1

⇐⇒ 2cε

[
1

ε (1− log(x))ε

]1

0

− 2cε

[
1

ε (1 + log(x))ε

]+∞

1

= 1

⇐⇒ 4

ε
cε = 1⇐⇒ cε =

ε

4
.

Donc

ϕε(x) =


ε

4
|x|−1 [1 + | log(|x|)|]−1−ε , si x 6= 0

0, si x = 0
. (5.17)

— Rappelons la règle de convergence pour les intégrales de Bertrand :

a)∀ 1 ≤ γ ≤ e :

∫ +∞

γ

dt

tα (log(x))β
< +∞⇐⇒ [(α > 1) ou (α = 1 et β > 1)],

b)∀ 1

e
≤ δ ≤ 1 :

∫ δ

0

dt

tα |log(x)|β
< +∞⇐⇒ [(α < 1) ou (α = 1 et β > 1)].

(5.18)

Les intégrales suivantes :∫ +∞

1

dt

tα [1 + log(x)]β
, et

∫ 1

0

dt

tα [1 + | log(x)|]β

vont apparâıtre dans la démonstration. D’une part, avec le changement u = te :∫ +∞

1

dt

tα [1 + log(x)]β
= eα−1

∫ +∞

e

du

uα(log(u))β
.

D’autre part, avec le changement v =
e

t
:

∫ 1

0

dt

tα [1 + | log(t)|]β
=

∫ 1

0

dt

tα [1− log(t)]β
=

∫ 1

0

dt

tα
[
log
(
e
t

)]β = e1−α
∫ +∞

e

dv

v2−α [log(v)]β
.

Ainsi, grâce à la règle (5.18)∫ 1

0

dt

tα [1 + | log(t)|]β
< +∞⇐⇒[(2− α > 1) ou (2− α = 1 et β > 1)]

⇐⇒[(α < 1) ou (α = 1 et β > 1)].
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En résumé, nous retiendrons la règle :

a)

∫ +∞

1

dt

tα [1 + log(x)]β
< +∞⇐⇒ [(α > 1) ou (α = 1 et β > 1)],

b)

∫ 1

0

dt

tα [1 + | log(x)|]β
< +∞⇐⇒ [(α < 1) ou (α = 1 et β > 1)].

(5.19)

— Une inégalité qui sera utile :

∀β > 0,∀t ∈ R :
∣∣eit − 1|

∣∣β ≤ min
(
|t|β, 2β

)
≤ 2β min(|t|β, 1). (5.20)

En effet :∣∣eit − 1
∣∣ ≤ ∣∣eit∣∣+1 = 2, et :

∣∣eit − 1
∣∣ =

∣∣∣ei t2 ∣∣∣×∣∣∣∣2i sin

(
t

2

)∣∣∣∣ = 2

∣∣∣∣sin( t2
)∣∣∣∣ ≤ 2×|t|

2
= |t|.

Donc, la fonction x 7→ xβ étant croissante sur ]0,+∞[.∣∣eit − 1
∣∣ ≤ min(|t|, 2) ≤ min(2|t|, 2) ≤ 2 min(|t|, 1)

=⇒
∣∣eit − 1

∣∣β ≤ min(|t|β, 2β) ≤ min(2β|t|β, 2β) ≤ 2β min(|t|β, 1).

— Nous aurons enfin besoin d’un lemme qui concerne les lois gaussiennes :

Lemme 5.12 Si une variable aléatoire réelle N suit la loi normale N (0, σ2).

Alors pour tout u > 0 :

P (|N | > u) ≤ 2
σe−

u2

2σ2

√
2πu

.

Preuve du lemme 5.12 : En utilisant la parité, puis un changement de variable v = t2 :

P (|N | > u) =
2

σ
√

2π

∫ +∞

u
e−

t2

2σ2 dt =
2

σ
√

2π

∫ +∞

u2

e−
v

2σ2

2
√
v

dv

≤ 2

uσ
√

2π

∫ +∞

u2

e−
v

2σ2

2
dv = 2

σe−
u2

2σ2

√
2πu

.

�

Preuve du théorème 5.9 :

Nous avons :

(X(t))t∈R =

(
Re

(∫
R

(
eitx − 1

)
|x|−H(t)− 1

αdM̃α(x)

))
t∈R

.

Soit

(Y (t))t∈R =

cαRe

+∞∑
j=1

gjΓ
− 1
α

j ϕε(Zj)
− 1
α
(
eitZj − 1

)
|Zj |−H(t)− 1

α


t∈R

, (5.21)

où :
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— ϕε st la densité de probabilité définie par l’égalité (5.17).

— (gj)j≥1 est une suite de variables aléatoires complexes indépendantes identiquement

distribuées sur (Ω,F ,P) centrées Gaussiennes.

— (Γj)j≥1 est la suite des instants d’arrêt d’un processus de Poissons d’intensité 1 sur

(Ω,F ,P) .

— (Zj)j≥1 est une suite de variables aléatoires réelles indépendantes identiquement dis-

tribuées sur (Ω,F ,P) dont la loi est absolument continue et ayant comme densité par

rapport à λ la fonction ϕε.

— Les suite de variables aléatoires (gj)j≥1, (Γj)j≥1, et (Zj)j≥1 sont indépendantes.

Le Théorème 5.5 nous dit que ces deux processus ont la même loi.

Considérons les sous-tribus de F :

FΓ = σ [{Γj | j ≥ 1}] , et : FΓ,Z = σ [{Γj | j ≥ 1} ∪ {Zj | j ≥ 1}] .

Et notons EΓ et EΓ,Z les espérances conditionnelles respectivement par rapport aux sous-

tribus FΓ, et FΓ,Z :

EΓ = E[ · ,FΓ], et EΓ,Z = E[ · ,FΓ,Z ].

Et notons, pour tout (t, x) de R2 :

f(t, x) =


eitx − 1

|x|H(t)+ 1
α

, si x 6= 0

0, si x = 0

L’égalité (5.21) implique que pour tous réels t, s, EΓ,Z [Y (t)− Y (s)] possède une loi gaussienne

centrée sur R. Alors nous avons, grâce au lemme de Fatou, et utilisant le fait que (gj)j≥1 est

une suite de variables indépendantes identiquement distribuées, et indépendantes des suites

(ξj)j≥1, (Γj)j≥1 :
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EΓ,Z

[
|Y (s)− Y (t)|2

]
≤ c2

α EΓ,Z

 lim
n→+∞

∣∣∣∣∣∣
n∑
j=1

Γ
− 1
α

j [ϕε(Zj)]
− 1
α [f(s, Zj)− f(t, Zj)] gj

∣∣∣∣∣∣
2

≤ c2
α lim inf
n→+∞

EΓ,Z


∣∣∣∣∣∣
n∑
j=1

Γ
− 1
α

j [ϕε(Zj)]
− 1
α [f(s, Zj)− f(t, Zj)] gj

∣∣∣∣∣∣
2

= c2
α lim inf
n→+∞

EΓ,Z

 ∑
1≤j,k≤n

[ΓjΓkϕε(Zj)ϕε(Zk)]
− 1
α (f(s, Zj)− f(t, Zj)) (f(s, Zk)− f(t, Zk)) gjgk


= c2

α lim inf
n→+∞

∑
1≤j,k≤n

[ΓjΓkϕε(Zj)ϕε(Zk)]
− 1
α (f(s, Zj)− f(t, Zj)) (f(s, Zk)− f(t, Zk))EΓ,Z (gjgk)

= c2
α lim inf
n→+∞

n∑
j=1

Γ
− 2
α

j [ϕε(Zj)]
− 2
α |f(s, Zj)− f(t, Zj)|2EΓ,Z

(
|g1|2

)
= c2

α E
(
|g1|2

)
× ℵ(t, s),

(5.22)

où

ℵ(t, s) =
+∞∑
j=1

Γ
− 2
α

j [ϕε(Zj)]
− 2
α |f(s, Zj)− f(t, Zj)|2 ,

les (in)égalités étant P-presque sûres, la dernière égalité venant du fait que les termes sont

positifs.

Commentaire 5.13 Dans les deux articles, l’un de Maejima, l’autre de Dozzi-Chevchenko,

ainsi que la thèse de Boutard, [9] dans la succession d’inégalités P-presque sûres, ils annoncent

des égalités P-presque sûres partout. Or, il s’agit d’être prudent. Considérant d’abord les par-

ties réelles des processus dans mon mémoire, la première ligne est a priori une inégalité (pour

tout complexe z : |Re(z)|2 ≤ |z|2) Ensuite la deuxième ligne, une convergence dominée ne

peut fonctionner, puisque sinon le membre de gauche EΓ,Z

[
|Y (s)− Y (t)|2

]
serait un élément

de L1(Ω), ce qui est faux puisque la variable Y (t) − Y (s) est α-stable, (pour 1 < α < 2).

Ayant cherché un argument de type équi-intégrabilité, puis de croissance de type convergence

monotone, moins forts que la convergence dominée, je ne suis pas parvenu à justifier qu’il

s’agissait d’une égalité. Alors par prudence j’ai fait usage du lemme de Fatou. Ayant obtenu

une inégalité, la démonstration se complique à l’étape 3, concernant des variances de lois

normales, mais la démonstration aboutit bien au résultat annoncé du théorème.
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Nous avons, pour tous réels x, s, t :

|f(t, x)− f(s, x)| =
∣∣∣(eitx − 1

)
|x|−(H(t)+ 1

α) −
(
eisx − 1

)
|x|−(H(s)+ 1

α)
∣∣∣

=
∣∣∣(eitx − eisx) |x|−(H(t)+ 1

α) +
(
eisx − 1

) (
|x|−(H(t)+ 1

α) − |x|−(H(s)+ 1
α)
)∣∣∣

≤ |x|−
1
α

[∣∣eitx − eisx∣∣ |x|−H(t) +
∣∣eisx − 1

∣∣ ∣∣∣|x|−H(t) − |x|−H(s)
∣∣∣] .

(5.23)

Considérons la fonction px définie sur R, et qui à y associe px(y) = |x|−y = e− log(|x|)y.

Sa dérivée est : p′x(y) = − log(|x|)|x|−y. Alors le théorème des accroissement finis pour px

appliqué aux réels H(t), et H(s) nous donne l’existence d’un réel u compris entre H(s) et

H(t) tel que :∣∣∣|x|−H(t) − |x|−H(s)
∣∣∣ =| log(|x|)| × |x|−u|H(t)−H(s)|

≤| log(|x|)|max
(
|x|−H̃ , |x|−Ĥ

)
|H(t)−H(s)|.

(5.24)

En utilisant l’inégalité (5.24) dans l’inégalité (5.23), puis la propriété de continuité de H

(5.15), nous obtenons :

|f(t, x)− f(s, x)| ≤ |x|−
1
α

[∣∣eisx∣∣ ∣∣∣ei(t−s)x − 1
∣∣∣ |x|−H(t)

]
+ |x|−

1
α

[∣∣eisx − 1
∣∣× | log(|x|)|max

(
|x|−H̃ , |x|−Ĥ

)
|H(t)−H(s)|

]
.

≤ 2|x|−
1
α

[
min(|t− s||x|, 1)|x|−H(t)

]
+ 2|x|−

1
α

[
min(|s||x|, 1)| log(|x|)|max

(
|x|−H̃ , |x|−Ĥ

)
|H(t)−H(s)|

]
≤ 2|x|−

1
α min(|t− s||x|, 1) max

(
|x|−H̃ , |x|−Ĥ

)
+ 2cH |x|−

1
α min(|s||x|, 1)| log(|x|)|max

(
|x|−H̃ , |x|−Ĥ

)
ð(|t− s|).

(5.25)

Soient pour tout δ tel que 0 < δ < min(1, T ) et t, s dans [−T, T ], tels que |t− s| < δ.

Nous allons chercher à majorer EΓ,Z

[
|Y (t)− Y (s)|2

]
.

En appliquant l’inégalité (5.25), pour x = Zj :

|f(t, Zj)− f(s, Zj)| ≤ 2 max(cH , T, 1)|Zj |−
1
α max

[
|Zj |−H̃ , |Zj |−Ĥ

]
× [min(δ|Zj |, 1) + min(|Zj |, 1)| log(|Zj |)|ð(δ)] .

(5.26)
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En élevant au carré, et en utilisant de l’inégalité : pour tous réels a, b : (a+ b)2 ≤ 2(a2 + b2) :

|f(t, Zj)− f(s, Zj)|2 ≤ 4 max(c2
H , T

2, 1)|Zj |−
2
α max

[
|Zj |−2H̃ , |Zj |−2Ĥ

]
× [min(δ|Zj |, 1) + min(|Zj |, 1)| log(|Zj |)|ð(δ)]2 .

≤ 8 max(c2
H , T

2, 1)|Zj |−
2
α max

[
|Zj |−2H̃ , |Zj |−2Ĥ

]
×
[
min(δ2|Zj |2, 1) + min(|Zj |2, 1)| log(|Zj |)|2(ð(δ))2

]
.

(5.27)

Alors nous obtenons, en désignant par c0 la constante : 8 max(T 2, c2
H , 1) :

ℵ(s, t) ≤ c0 i(δ) (5.28)

où i(δ) désigne :

+∞∑
j=1

(|Zj |Γjϕε(Zj))−
2
α max

(
|Zj |−2Ĥ , |Zj |−2H̃

) [
min(δ2|Zj |2, 1) + min(|Zj |2, 1)| log(|Zj |)|2(ð(δ))2

]
.

(5.29)

En désignant par c1 la constante : c2
αc0, et en faisant usage de l’inégalité (5.26), P-presque

sûrement :

EΓ,Z

[
|Y (t)− Y (s)|2

]
≤ c1E[|g1|2]i(δ), (5.30)

Décrivons à ce stade les quatre étapes de la démonstration :

— Étape 1 : Nous allons prouver qu’il existe une constante c3 > 0 telle que P-presque

sûrement :

EΓ [i(δ)] ≤ c3

+∞∑
j=1

Γ
− 2
α

j

× δ2Ĥ [1 + | log(|δ|)|](
2
α
−1)(1+ε) (5.31)

— Étape 2 : Nous allons prouver que :

P

(
lim

j→+∞

i
(
2−j
)

2−2jĤj
2
α

(1+ε)
= 0

)
= 1. (5.32)

— Étape 3 : On note pour tout j ∈ N, l’ensemble dyadique Dj,T de niveau j dans [−T, T ],

ainsi que l’ensemble DT des nombres dyadiques dans [−T, T ], soit :

Dj,T =

{
k

2j
| k ∈ [−2jT, 2jT ] ∩Z

}
, et DT =

⋃
j∈N
Dj,T .

Nous savons que DT est dense dans [−T, T ]. Nous allons alors montrer qu’il existe une

constante c1 > 0 telle que l’évènement Ω1(T ) suivant est P-presque sûr :

Ω̃T =
⋃
j∈N

⋂
{

s,t∈DT
|s−t|≤2−j

{
|X(t)−X(s)| ≤ c1|t− s|Ĥ [1 + | log(|t− s|)|]

1+ε
α

+ 1
2

}
. (5.33)
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— Étape 4 : Nous construisons une modification
(
X̃T (t)

)
t∈[−T,T ]

de (X(t))t∈[−T,T ] qui

satisfait : pour tout ω ∈ Ω̃T , il existe une constante cω,T > 0 telle que pour tous

s, t ∈ [−T, T ] : ∣∣∣X̃T (t)− X̃T (s)
∣∣∣ ≤ cω,T |t− s|Ĥ [1 + | log(|t− s|)|]

1+ε
α

+ 1
2 . (5.34)

Étape 1 : Comme (Γj)j≥1 ⊥⊥ (Zj)j≥1, alors par convergence monotone :

EΓ [ i(δ)] =

+∞∑
j=1

|Γj |−
2
α

× [I1(δ) + I2(δ)] , (5.35)

où :I1(δ) =E
[
(|Z1|ϕε(Z1))−

2
α max

(
|Z1|−2H̃ , |Z1|−2Ĥ

)
min

(
δ2|Z1|2, 1

)]
I2(δ) =E

[
(|Z1|ϕε(Z1))−

2
α max

(
|Z1|−2H̃ , |Z1|−2Ĥ

)
min

(
|Z1|2, 1

)
| log(|Z1|)|2 (ð(δ))2

] .
Nous allons majorer les intégrales I1(δ), et I2(δ) afin d’obtenir l’inégalité (5.31). Z1

ayant comme loi ϕε.λ, alors, utilisant la parité :

I1(δ) =

∫
R

(ϕε)
1− 2

α |x|−
2
α max

(
|x|−2H̃ , |x|−2Ĥ

)
min

(
δ2|x|2, 1

)
dx

=2

∫ +∞

0
(ϕε)

1− 2
α x−

2
α max

(
x−2H̃ , x−2Ĥ

)
min

(
δ2x2, 1

)
dx

= 2 [ I1,1(δ) + I1,2(δ)] ,

(5.36)

où : 
I1,1(δ) =

∫ 1
δ

0
(ϕε(x))1− 2

α x−
2
α δ2x2 max

(
x−2Ĥ , x−2H̃

)
dx

I1,2(δ) =

∫ +∞

1
δ

(ϕε(x))−
2
α x−

2
α max

(
x−2Ĥ , x−2H̃

)
dx

.

D’une part, effectuant le changement de variable y = δx, dans I1,1(δ) :

I1,1(δ) =

∫ 1
δ

0
δ2
(ε

4

)1− 2
α
x2− 2

α

[
x (1 + | log(x)|)1+ε

]−(1− 2
α)

max
(
x−2Ĥ , x−2H̃

)
dx

=

∫ 1
δ

0
δ2
(ε

4

)1− 2
α
xmax

(
x−2Ĥ , x−2H̃

)
(1 + | log(x)|)−(1+ε)(1− 2

α) dx

=

∫ 1

0

(ε
4

)1− 2
α
ymax

[(y
δ

)−2Ĥ
,
(y
δ

)−2H̃
] [

1 +
∣∣∣log

(y
δ

)∣∣∣]( 2
α
−1)(1+ε)

dy.

Comme 0 < δ < 1, alors x 7→ δx décroit sur R, et donc :

min
(
δ−2Ĥ , δ−2H̃

)
= max

(
δ2Ĥ , δ2H̃

)
= δ2Ĥ .
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Dès lors :

I1,1(δ) =
(ε

4

)1− 2
α
δ2Ĥ

∫ 1

0
ymax

(
y−2Ĥ , y−2H̃

) [
1 +

∣∣∣log
(y
δ

)∣∣∣]( 2
α
−1)(1+ε)

dy. (5.37)

y appartenant à ]0, 1[, alors y−2 ∈]1,+∞[, et alors x 7→ y−2x croit sur R, donc :

∀ y ∈]0, 1[: max
(
y−2Ĥ , y−2H̃

)
= y−2H̃ .

Ainsi l’intégrale dans (5.37) devient :

I1,1(δ) =
(ε

4

)1− 2
α
δ2Ĥ

∫ 1

0
y1−2H̃

[
1 +

∣∣∣log
(y
δ

)∣∣∣](1+ε)( 2
α
−1))

dy.

Nous avons :

1 +
∣∣∣log

(y
δ

)∣∣∣ = 1 + |log(y)− log(δ)|

≤ 1 + | log(y)|+ | log(δ)|

≤ 1 + | log(y)|+ | log(δ)|+ | log(y)|| log(δ)|

= (1 + | log(y)|) (1 + | log(δ)|) .

(5.38)

Et comme (1 + ε)
(

2
α − 1

)
> 0, l’inégalité ci-dessus devient :[

1 +
∣∣∣log

(y
δ

)∣∣∣](1+ε)( 2
α
−1)
≤ [1 + | log(y)|](1+ε)( 2

α
−1) [1 + | log(δ)|](1+ε)( 2

α
−1) . (5.39)

Utilisant l’inégalité (5.39), l’égalité (5.37) devient :

I1,1(δ) ≤
(ε

4

)1− 2
α
δ2Ĥ

(∫ 1

0
y1−2H̃ [1 + | log(y)|](1+ε)( 2

α
−1) dy

)
[1 + | log(δ)|](1+ε)( 2

α
−1) .

D’après la règle (5.19), comme 2H̃ − 1 < 1, alors :∫ 1

0
y1−2H̃ [1 + | log(y)|](1+ε)( 2

α
−1) dy < +∞,

et donc, en posant la constante :

c1,1 =
(ε

4

)1− 2
α

(∫ 1

0
y1−2H̃ [1 + | log(y)|](1+ε)( 2

α
−1) dy

)
,

nous obtenons :

I1,1(δ) ≤ c1,1δ
2Ĥ [1 + | log(δ)|](1+ε)( 2

α
−1) . (5.40)

D’autre part, en procédant de même pour I1,2(δ), par changement de variable y = δx :

I1,2(δ) =
(ε

4

)1− 2
α
δ2Ĥ

∫ +∞

1
max

(
y−2Ĥ , y−2H̃

)
y−1

(
1 +

∣∣∣log
(y
δ

)∣∣∣)(1+ε)( 2
α
−1)

dy.
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Cette fois, y > 1, alors max
(
y−2Ĥ , y−2H̃

)
= y−2Ĥ . Faisant usage de l’inégalité (5.39) :

I1,2(δ) ≤
(ε

4

)1− 2
α
δ2Ĥ

(∫ +∞

1
y−1−2Ĥ [1 + log(y)](1+ε)( 2

α
−1) dy

)
[1 + | log(δ)|](1+ε)( 2

α
−1)

(5.41)

D’après la règle (5.19), comme 2Ĥ + 1 > 1, alors :∫ +∞

1
y−1−2Ĥ [1 + log(y)](1+ε)( 2

α
−1) dy < +∞.

Et donc, en posant par la constante :

c1,2 =
(ε

4

)1− 2
α

(∫ +∞

1
y−1−2Ĥ [1 + log(y)](1+ε)( 2

α
−1) dy

)
,

nous obtenons également :

I1,2(δ) ≤ c1,2δ
2Ĥ [1 + | log(δ)|](1+ε)( 2

α
−1) . (5.42)

Passons à la majoration de I2(δ) :

I2(δ) =

E
[
(|Z1|ϕε(Z1))−

2
α max

(
|Z1|−2H̃ , |Z1|−2Ĥ

)
min

(
|Z1|2, 1

)
| log(|Z1|)|2 (ð(δ))2

]
= 2 (ð(δ))2

∫ +∞

0
(ϕε(x))1− 2

αx−
2
α max

(
x−2Ĥ , x−2H̃

)
min(x2, 1) |log(x)|2 dx

= 2
(ε

4

)1− 2
α

(ð(δ))2
∫ +∞

0

max
(
x−2Ĥ , x−2H̃

)
min(x2, 1)

x [1 + | log(x)|](1+ε)(1− 2
α)

| log(x)|2dx

= 2
(ε

4

)1− 2
α

(ð(δ))2 [I2,1 + I2,2] ,

(5.43)

où : 
I2,1 =

∫ 1

0

max
(
x−2Ĥ , x−2H̃

)
min(x2, 1)

x [1 + | log(x)|](1+ε)(1− 2
α)

| log(x)|2dx

I2,2 =

∫ +∞

1

max
(
x−2Ĥ , x−2H̃

)
min(x2, 1)

x [1 + | log(x)|](1+ε)(1− 2
α)

| log(x)|2dx

.

D’une part, comme | log(x)|2 ≤ (1 + | log(x)|)2 :

I2,1 =

∫ 1

0
x1−2H̃ [1 + | log(x)|](1+ε)( 2

α
−1) (log(x))2dx

≤
∫ 1

0
x1−2H̃ [1 + | log(x)|](1+ε)( 2

α
−1)+2 dx,
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intégrale qui converge d’après la règle (5.19) car 1− 2H̃ < 1. D’autre part :

I2,1 ≤
∫ 1

0
x−1−2Ĥ [1 + | log(x)|](1+ε)( 2

α
−1)+2 dx,

intégrale qui converge, d’après la règle (5.19) car 1 + 2Ĥ > 1.

Dès lors, en notant la constante :

c2 = 2
(ε

4

)1− 2
α

[I2,1 + I2,2] ,

en rappelant que : ð(δ) = δĤ [1 + | log(δ)|]
1
2( 2

α
−1) :

I∈(δ) ≤ c2 (ð(δ))2 = c2δ
2Ĥ [1 + | log(δ)|](

2
α
−1) ≤ c2δ

2Ĥ [1 + | log(δ)|](1+ε)( 2
α
−1) .

(5.44)

Combinant les inégalités (5.40), (5.42) et (5.44), et en posant c3 = max(c1,1, c1,2, c2),

l’inégalité (5.35) devient finalement :

EΓ [ i(δ)] ≤ c3

+∞∑
j=1

Γ
− 2
α

j

× δ2Ĥ [1 + | log(|δ|)|](
2
α
−1)(1+ε) ,

l’inégalité (5.31) annoncée.

Étape 2 : D’après la loi forte des grands nombres, (argument déjà vu dans la démonstration

du Théorème 3.36) il existe deux variables aléatoires réelles P-presque sûrement stric-

tement positives C1, C2 telles que :

Ω̃1 =
⋂
j∈N
{C1j ≤ Γj ≤ C2j}, est P-presque sûr.

Comme 2
α > 1, alors pour tout ω dans Ω̃1 :

+∞∑
j=1

(Γj(ω))−
2
α ≤ (C1(ω))−

2
α

+∞∑
j=1

j−
2
α

 < +∞.

Pour tout k ≥ 1, en prenant δ = 2−k, alors :

δ2Ĥ [1 + | log(|δ|)|](
2
α
−1)(1+ε) = 2−2kĤ [1 + k log(2)](

2
α
−1)(1+ε)

≤ 2−2kĤ [(1 + log(2))k](
2
α
−1)(1+ε) .

Dès lors, en posant c4 = c3 × [(1 + log(2))k](
2
α
−1)(1+ε) , et sachant que l’inégalité

(5.31) est P-presque sûre, et comme


+∞∑
j=1

Γ
− 2
α

j

 < +∞

 est aussi P-presque sûr,
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alors l’évènement :

Ω̃2 =
⋂
k∈N∗

EΓ

[
i
(
2−j
)]
≤ c4

+∞∑
j=1

Γ
− 2
α

j

× k( 2
α
−1)(1+ε)

 < +∞

est P-presque sûr. Alors, pour tout ω dans Ω̃1 ∩ Ω̃2 :

+∞∑
k=1

EΓ

[
i
(
2−k
)]

(ω)

2−2kĤk
2
α

(1+ε)
≤

+∞∑
k=1

c4k
− 2
α [C1(ω)]−

2
α

+∞∑
j=1

j−
2
α

 < +∞.

Soit l’évènement P-presque sûr :

Ω̃3 =

{
+∞∑
k=1

EΓ

[
i
(
2−k
)]

2−2kĤk
2
α

(1+ε)
< +∞

}
.

Et soit alors l’évènement :

Ω̃4 =

{
+∞∑
k=1

i
(
2−k
)

2−2kĤk
2
α

(1+ε)
< +∞

}
.

Alors cet évènement est P-presque sûr aussi. En effet, par convergence monotone (les

égalités étant P-presque sûres) :

EΓ

[
+∞∑
k=1

i
(
2−k
)

2−2kĤk
2
α

(1+ε)

]
=EΓ

[
lim ↑
n→+∞

n∑
k=1

i
(
2−k
)

2−2kĤk
2
α

(1+ε)

]

= lim ↑
n→+∞

EΓ

[
n∑
k=1

i
(
2−k
)

2−2kĤk
2
α

(1+ε)

]

= lim ↑
n→+∞

n∑
k=1

EΓ

[
i
(
2−k
)]

2−2kĤk
2
α

(1+ε)
=

+∞∑
k=1

EΓ

[
i
(
2−k
)]

2−2kĤk
2
α

(1+ε)

(5.45)

Ainsi, (5.45) implique :

P(Ω̃4) = E(1
Ω̃4

) = E
[
EΓ(1

Ω̃4
)
]

= E(1
Ω̃3

) = P(Ω̃3) = 1.

Et alors finalement,

ω ∈ Ω̃4 ⇐⇒
+∞∑
k=1

i
(
2−k
)

(ω)

2−2kĤk
2
α

(1+ε)
< +∞ =⇒ lim

n→+∞

i
(
2−k
)

(ω)

2−2kĤk
2
α

(1+ε)
= 0.

De sorte que Ω̃4 ⊂ Ω̃5, où :

Ω̃5 =

{
lim

k→+∞

i
(
2−k
)

(ω)

2−2kĤk
2
α

(1+ε)
= 0

}
, (5.46)

d’où la conclusion (5.32) de l’étape 2.
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Étape 3 : Rappelons que pour tous s, t dans [−T, T ], tels que |t− s| ≤ δ :

ℵ(t, s) =
+∞∑
j=1

Γ
− 2
α

j [ϕε(Zj)]
− 2
α |f(s, Zj)− f(t, Zj)|2.

Y (t) − Y (s) a pour loi conditionnelle par rapport à FΓ,Z la loi normale N (0, µΓ,Z),

où :

µΓ,Z =

{
EΓ,Z

[(
Y

(
k + 1

2j

)
− Y

(
k

2j

))2
]} 1

2

.

D’après l’inégalité (5.22), P-presque sûrement :

(µΓ,Z)
1
2 ≤ cα

[
E(|g1|2)

] 1
2 (ℵj,k)

1
2 (5.47)

où ℵj,k désigne la variable aléatoire : ℵ
(
k

2j
,
k + 1

2j

)
.

Soit l’évènement appartenant à FΓ,Z : Bj,k = {ω ∈ Ω | µΓ,Z(ω) = 0}. On va montrer

que :

P(Bj,k) = P
(
1Bj,k

)
= 0. (5.48)

Ainsi on aura montré que µΓ,Z 6= 0, P-presque sûrement. Tout d’abord, pour tous s, t

réels distincts, {ω ∈ Ω | (Y (t)− Y (s))(ω) 6= 0} est un évènement P-presque sûr.

En effet, car Y (t)− Y (s) suit une loi stable absolument continue, donc :

{ω ∈ Ω | (Y (t)− Y (s))(ω) 6= 0} = (Y (t)− Y (s)−1({0}) est de probabilité nulle.

Ainsi :

P (Bj,k) = P

[
Bj,k ∩

{
Y

(
k + 1

2j

)
− Y

(
k

2j

)
6= 0

}]
= P

{
1Bj,k ×

[
Y

(
k + 1

2j

)
− Y

(
k

2j

)]2

6= 0

}
.

(5.49)

Par ailleurs : 1Bj,k étant FΓ,Z-mesurable.

E

{
1Bj,k ×

[
Y

(
k + 1

2j

)
− Y

(
k

2j

)]2
}

=E

{
1Bj,k × EΓ,Z

[(
Y

(
k + 1

2j

)
− Y

(
k

2j

))2
]}

=E
[
1Bj,k × 0

]
= 0.

(5.50)

Donc la variable positive 1Bj,k ×
[
Y

(
k + 1

2j

)
− Y

(
k

2j

)]2

est nulle P-presque sûrement.

Alors, en utilisant la relation (5.49), nous obtenons : P(Bj,k) = 0. Ce que nous voulions
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montrer. L’inégalité (5.47) implique aussi que ℵj,k est strictement positive P-presque

sûrement. Alors, l’inégalité (5.47) devient :

(ℵj,k)−
1
2 (µΓ,Z)

1
2 ≤ β, (5.51)

où β = cα
[
E(|g1|2)

] 1
2 . Enfin, (µΓ,Z)−

1
2

[
Y

(
k + 1

2

)
− Y

(
k

2j

)]
a pour loi condition-

nelle par rapport à FΓ,Z est N (0, 1).

Considérons, pour tout j entier naturel et pour tout k appartenant à [−2jT, 2jT ]∩Z :

Ω̃6,j,k =

{∣∣∣∣Y (k + 1

2j

)
− Y

(
k

2j

)∣∣∣∣ > β−1
√

3 log(2) j
1
2 (ℵj,k)

1
2

}
En utilisant le fait (5.48), le Lemme 5.12, avec u =

√
3 log(2)j, l’inégalité (5.51) :

P(Ω̃6,j,k) = E(1
Ω̃6,j,k

) = E
[
EΓ,Z(1

Ω̃6,j,k
)
]

= P

{
EΓ,Z

[∣∣∣∣Y (k + 1

2j

)
− Y

(
k

2j

)∣∣∣∣] > β−1
√

3 log(2)j
1
2 (ℵj,k)

1
2

}
= P

{
(µΓ,Z)−

1
2EΓ,Z

[∣∣∣∣Y (k + 1

2j

)
− Y

(
k

2j

)∣∣∣∣] > β−1
√

3 log(2)j
1
2 (ℵj,k)

1
2 (µΓ,Z)−

1
2

}
≤ P

{
(µΓ,Z)−

1
2EΓ,Z

[∣∣∣∣Y (k + 1

2j

)
− Y

(
k

2j

)∣∣∣∣] >√3 log(2)j
1
2

}

≤ 2√
2π
√

3 log(2)j
exp

−
(√

3 log(2)j
)2

2


=

2√
6π log(2)

√
j

exp

[
−3j log(2)

2

]
.

(5.52)

Soit à présent l’évènement :

Ω̃6,j =
⋃

k∈[−2jT,2jT ]∩Z

Ω̃6,j,k

=

{
max

k∈[−2jT,2jT ]∩Z

∣∣∣∣Y (k + 1

2j

)
− Y

(
k

2j

)∣∣∣∣ >√3 log(2) j
1
2 [ℵj,k]

1
2

}
.
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En utilisant l’inégalité (5.52), pour tout k dans [−2jT, 2jT ] ∩Z :

P
(

Ω̃6,j

)
≤

∑
k∈[−2jT,2jT ]∩Z

P
(

Ω̃6,j,k

)

≤
∑

k∈[−2jT,2jT ]∩Z

2 exp
[
−3j log(2)

2

]
√

6π log(2)
√
j

≤
(
2j+1T + 1

)
×

2 exp
[
−3j log(2)

2

]
√

6π log(2)
√
j

=
2j+2− 3

2
jT + 21− 3

2
j√

6π log(2)
√
j
≤ 4T + 2√

6π log(2)
2−

j
2 j−

1
2 ,

(5.53)

qui est le terme d’une série convergente. Le lemme de Borel-Cantelli nous dit alors

que l’évènement : lim inf
n→+∞

Ω̃6,j est P-presque impossible. Alors l’évènement :

Ω̃6 = Ω \
[
lim inf
n→+∞

Ω̃6,j

]
= lim sup

n→+∞
Ω \ Ω̃6,j (5.54)

est P-presque sûr. Soit alors :

Ω̃7 = Ω̃5 ∩ Ω̃6,

où Ω̃5 désigne l’évènement de l’étape 2, (5.46). Nous allons prouver que Ω̃T défini

par la relation (5.33) contient Ω̃7, et donc Ω̃T sera P-presque sûr (but de l’étape 3).

Soit ω ∈ Ω̃7, alors d’après la définition de Ω̃6, il existe J1(ω) ≥ 1 tel que pour tout

j ≥ J1(ω) et pour tout k appartenant à [−2jT, 2jT ] ∩Z :∣∣∣∣Y (k + 1

2j
, ω

)
− Y

(
k

2j
, ω

)∣∣∣∣ ≤√3 log(2) j
1
2 (ℵj,k(ω))

1
2 (5.55)

D’après la définition (5.46) de Ω̃5 :

lim
j→+∞

i
(
2−j
)

(ω)

2−2jĤj
2
α

(1+ε)
= 0. (5.56)

Or, d’après l’inégalité (5.28) :

(ℵj,k(ω))
1
2 ≤
√
c0

[
i
(
2−j
)

(ω)
] 1
2 (5.57)

Alors, il existe J2(ω) ≥ 1 tel que pour tout j ≥ J2(ω) :[
i
(
2−j
)

(ω)
] 1
2 ≤ 1√

3c0 log(2)
× 2−jĤj

1+ε
α . (5.58)
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Donc, en désignant par J(ω) le maximum de J1(ω), et J2(ω), pour tout j ≥ J(ω), les

relations (5.55) et (5.58) donnent :∣∣∣∣Y (k + 1

2j
, ω

)
− Y

(
k

2j
, ω

)∣∣∣∣ ≤ √3 log(2) j
1
2
[
i
(
2−j
)

(ω)
] 1
2

≤
√

3 c0 log(2) j
1
2 [ℵj,k(ω)]

1
2

≤ 2−jĤj
1
α

+ ε
α

+ 1
2 .

(5.59)

Soit n > J(ω), nous allons démontrer par récurrence que pour tous m,n tels que

m > n, pour tous s, t appartenant à Dm,T , tels que 0 < |t− s| < 2−n :

|Y (t, ω)− Y (s, ω)| ≤ 2
m∑

j=n+1

2−jĤj
1
α

+ ε
α

+ 1
2 . (5.60)

t et s ayant un rôle symétrique, on peut supposer s < t. Si m = n + 1, on ne peut

avoir que s =
k

2m
, et t =

k + 1

2m
.

(
t− s =

1

2n+1
<

1

2n

)
.

En effet, si : s =
k

2m
, et t =

l

2m
, pour l > k+1, alors : t− s ≥ k + 2− k

2m
=

2

2n+1
=

1

2n
.

Alors, d’après la relation (5.59) :

|Y (t, ω)− Y (s, ω)| ≤ 2−(n+1)Ĥ(n+ 1)
1
α

+ ε
α

+ 1
2 .

Supposons que la relation (5.60) soit vraie pour un certain m strictement à n.

Soient alors s, t appartenant à Dm+1,T , tels que s < t. Et soient :{
t1 = max{u ∈ Dm,T | u ≤ t}

s1 = min{u ∈ Dm,T | s ≤ u}

Alors :
s ≤ s1 ≤ t1 ≤ t

s1 − s ≤ 2−(m+1)

t− t1 ≤ 2−(m+1)

. Donc :

|Y (s1, ω)− Y (s, ω)| ≤2−(m+1)Ĥ(m+ 1)
1
α

+ ε
α

+ 1
2

|Y (t, ω)− Y (t1, ω)| ≤2−(m+1)Ĥ(m+ 1)
1
α

+ ε
α

+ 1
2

.

Par hypothèse de récurrence, comme s1, t2 appartiennent à Dm,T , et grâce à l’inégalité

triangulaire :

|Y (t, ω)− Y (s, ω)| ≤ |Y (t, ω)− Y (t1, ω)|+ |Y (t1, ω)− Y (s1, ω)|+ |Y (s1, ω)− Y (s, ω)|

≤ 2× 2−(m+1)Ĥ(m+ 1)
1
α

+ ε
α

+ 1
2 + 2

m∑
j=n+1

2−jĤj
1
α

+ ε
α

+ 1
2 .

= 2
m+1∑
j=n+1

2−jĤj
1
α

+ ε
α

+ 1
2 ,
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ce qu’il fallait démontrer.

Soient maintenant s et t appartenant à DT , tels que s < t, et tels que : t− s < 2−J(ω).

Alors, il existe un unique entier n tel que :

2−(n+1) ≤ t− s < 2−n. (5.61)

Grâce à l’inégalité (5.60) :

|Y ′t, ω)− Y (s, ω)| ≤ 2

+∞∑
j=n+1

2−jĤj
1
α

+ ε
α

+ 1
2

= 2
+∞∑
j=0

2−(j+n+1)Ĥ(j + n+ 1)
1
α

+ ε
α

+ 1
2

= 21−(n+1)Ĥ(n+ 1)
2
α

+ ε
α

+ 1
2

+∞∑
j=0

2−jĤ
(

1 +
j

n+ 1

) 2
α

+ ε
α

+ 1
2


≤ 21−(n+1)Ĥ(n+ 1)

2
α

+ ε
α

+ 1
2

+∞∑
j=0

2−jĤ (1 + j)
2
α

+ ε
α

+ 1
2


= c5 2−(n+1)Ĥ(n+ 1)

2
α

+ ε
α

+ 1
2 ,

(5.62)

où c5 est la constante : 2×

+∞∑
j=0

2−jĤ (1 + j)
2
α

+ ε
α

+ 1
2

 < +∞. Nous avons :

2−(n+1) ≤ t− s < 2−n

=⇒ − (n+ 1) log(2) ≤ log(t− s) < −n log(2)

=⇒ n log(2) < | log(t− s)| ≤ (n+ 1) log(2)

=⇒ (n+ 1) log(2) < n log(2) + 1 < 1 + | log(t− s)| ≤ (n+ 1) log(2) + 1

=⇒ [(n+ 1) log(2)]
2
α

+ ε
α

+ 1
2 [1 + | log(t− s)|]

2
α

+ ε
α

+ 1
2 .

(5.63)

Donc :

(n+ 1)
2
α

+ ε
α

+ 1
2 ≤ [1 + | log(t− s)|]

2
α

+ ε
α

+ 1
2

(log(2))
2
α

+ ε
α

+ 1
2

. (5.64)

Grâce aux inégalités (5.61) (5.64), l’inégalité (5.60) devient :

|Y (t, ω)− Y (s, ω)| ≤ c5(log(2))−( 2
α

+ ε
α

+ 1
2)|t− s|Ĥ [1 + | log(t− s)|]

2
α

+ ε
α

+ 1
2 . (5.65)

En posant c1 = c5(log(2))−( 2
α

+ ε
α

+ 1
2), l’inégalité (5.65) signifie donc que ω apartient à
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Ω̂T , où :

Ω̂T =
⋃
j∈N

⋂
{
s,t ∈ DT
|s−t|≤2−j

{
|Y (t)− Y (s)| ≤ c1|t− s|Ĥ [1 + | log(|t− s|)|]

1+ε
α

+ 1
2

}
.

Mais pour chaque indice t, s dans cette réunion d’intersection dénombrable, Y (t)−Y (s)

possède la même loi que X(t)−X(s). Donc, ω appartient bien à Ω̃T .

Ce qui clôt l’étape 3.

Étape 4 : Nous construisons une modification
(
X̃T (t)

)
t∈[−T,T ]

de (X(t))t∈[−T,T ] qui sa-

tisfait :

i) Si ω n’appartient pas à Ω̃T , X̃T (t) = 0 pour tout t dans [−T, T ].

ii) Si ω appartient à Ω̃T , et si t appartient à DT , alors posons X̃T (t, ω) = XT (t, ω)

iii) Si ω appartient à Ω̃T , et si t appartient à [−T, T ] \ DT , alors nous définissions

X̃T (t, ω) comme étant la limite de la suite de réels (XT (tn, ω))n∈N où (tn)n∈N est

une suite d’éléments de DT et convergente vers t.

Apportons une précision au troisième cas, une telle suite (tn)n∈N suggérée dans ce

cas (iii) par densité de DT dans [−T, T ]. Ensuite, ω appartenant à Ω̃T , la suite

(XT (tn, ω))n∈N converge bel et bien, car pour tous entiers naturels n et m

|XT (tn, ω)−XT (tm, ω)| ≤ c1|tn − tm|Ĥ [1 + | log(|tn − tm|)|]
1+ε
α

+ 1
2 , (5.66)

le membre de droite tendant vers 0 quand n et m tendent vers +∞, car 0 < Ĥ < 1.

La suite (XT (tn, ω))n∈N converge car elle est alors de Cauchy.

Enfin la limite X̃T (t) de cette suite ne dépend pas de la suite (tn)n∈N choisie. En effet

soit (sn)n∈N une suite d’éléments de DT et convergente vers t. Alors nous avons, grâce

à l’inégalité (5.66) appliquée à (sn)n :

|XT (sn, ω)− X̃T (t, ω)| ≤ |XT (sn, ω)− X̃T (tn, ω)|+ |X̃T (tn, ω)− X̃T (t, ω)|

≤ c1|tn − tm|Ĥ [1 + | log(|tn − tm|)|]
1+ε
α

+ 1
2

+ |X̃T (tn, ω)− X̃T (t, ω)|.

(5.67)

Le membre de droite converge vers 0 quand n et m tendent vers +∞, car encore une

fois le terme de type Cauchy tend vers 0, et parce que XT (tn, ω))n∈N converge vers

X̃T (t). Ainsi la suite (XT (sn, ω))n∈N converge aussi vers X̃T (t).

Montrons à présent que X̃T vérifie l’inégalité (5.34).

ω appartenant à Ω̃T , alors il existe J(ω) ≥ 1, tel que pour tous s′, t′ dans DT tels que

|t′ − s′| < 2−J(ω) :

|XT (t′)−XT (s′)| ≤ c1|t′ − s′|Ĥ
[
1 + | log(|t′ − s′|)|

] 1+ε
α

+ 1
2 (5.68)
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Soient t, s appartenant à [−T, T ], et tels que |t−s| < 2−J(ω). Alors il existe deux suites

(tn)n et (sn)n d’éléments de DT , convergentes respectivement vers t et s et telles que

pour tout entier naturel n : |tn − sn| < 2−J(ω).

Alors, grâce à l’inégalité (5.68), pour tout entier naturel n :

|XT (tn)−XT (sn)| ≤ c1|tn − sn|Ĥ [1 + | log(|tn − sn|)|]
1+ε
α

+ 1
2 (5.69)

Faisant tendre n vers +∞, on obtient la même inégalité (5.68) cette fois pour tous t

et s de [−T, T ] tels que |t − s| < 2−J(ω). En particulier, nous avons bien que X̃T est

P-presque sûrement continue sur [−T, T ].

Montrons que (X̃T (t))t∈[−T,T ] est une modification de (XT (t))t∈[−T,T ]. Par l’hypothèse

(ii), et par le fait que P(Ω̃) = 1, nous avons que pour tout t dans DT : X̃T (t) = XT (t),

P-presque sûrement.

Si t appartient à [−T, T ]/DT , choisissons une suite (tn)n d’éléments de DT et conver-

gente vers t. Par définition de X̃T (cas (iii)), nous savons que P-presque sûrement,

(XT (tn))n converge vers X̃T (t).

Ainsi pour montrer dans ce cas que P-presque sûrement : X̃T (t) = XT (t), il suffit de

prouver que (XT (tn))n converge en probabilité vers XT (t).

Par définition de l’intégrale par rapport à une mesure stable :

XT (tn) =

∫
R

f(tn, x)dM̃α(x)
P−−−−−→

n→+∞

∫
R

f(t, x)dM̃α(x) = XT (t)

⇐⇒ f(tn, ·)
Lα(R)−−−−−→
n→+∞

f(t, ·).

Nous allons faire usage du théorème de la convergence dominée. Partons de l’inégalité

(5.25), pour tout réel non nul x :

|f(tn, x)− f(t, x)| ≤ 2|x|−
1
α min(|tn − t||x|, 1) max

(
|x|−H̃ , |x|−Ĥ

)
+ 2cH |x|−

1
α min(|t||x|, 1)| log(|x|)|max

(
|x|−H̃ , |x|−Ĥ

)
ð(|tn − t|).

La quantité |tn− t| tendant vers 0 il existe un rang Nx ≥ 1 tel que pour tout n ≥ Nx :

min(|tn − t||x|, 1) = |tn − t||x|. Et donc :

2|x|−
1
α min(|tn − t||x|, 1) max

(
|x|−H̃ , |x|−Ĥ

)
−−−−−→
n→+∞

0.

Et,

ð(|tn − t|) = |tn − t|Ĥ (1 + | log(|tn − t|)|)
1
2( 2

α
−1) −−−−−→

n→+∞
0,
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car 0 < Ĥ < 1. Donc |f(tn, ·)− f(t, ·)| λ−pp−−−−−→
n→+∞

0.

D’autre part, pour tout réel x non nul, grâce à l’inégalité (5.20) :

|f(tn, x)|α =
|eitx − 1|α

|x|1+H(t)α

≤ 2α
min (|x|α, 1)

|x|1+αH(t)
≤ 2α min (|x|α, 1) max

(
|x|−1−αĤ , |x|−1−αH̃

)
.

Soit g la fonction définie pour tout x non nul par :

g(x) = 2α min (|x|α, 1) max
(
|x|−1−αĤ , |x|−1−αH̃

)
.

(et g(0) = 0) Alors cette fonction g est mesurable positive et appartient à L1(R). En

effet :∫
R

g(x)dx = 2α+1

[∫ 1

0
max

(
x−1−αĤ , x−1−αH̃

)
xαdx+

∫ +∞

1
max

(
x−1−αĤ , x−1−αH̃

)
dx

]
= 2α+1

[∫ 1

0
x−1+α(1−H̃)dx+

∫ +∞

1
x−1−αĤdx

]
< +∞,

car 1 + αĤ > 1 et −1 < α(1− H̃)− 1 < 0. Par le théorème de convergence dominée :

f(tn, ·)
Lα(R)−−−−−→
n→+∞

f(t, ·), donc : XT (tn)
P−−−−−→

n→+∞
XT (t).

Ce qui clôt l’étape 4.

Nous pouvons alors définir une modification (X̃(t))t∈R de (X(t))t∈R telle que pour tout ω

appartenant à l’évènement P-presque sûr
⋂
T∈N

Ω̃T . Et l’inégalité (5.16) est vraie. Ce qui clôt

la démonstration.

�

6 Conclusion

Nous avons pu voir que les séries de Le Page permettent d’obtenir des modifications de

processus définis par des intégrales pour lesquelles les trajectoires sont höldériennes. Et que

cette méthode a pu aboutir pour un processus réel harmonisable multifractionnaire SαS, sous

certaines conditions sur la fonction de Hurst associée.

Des développements en séries de Le Page existent pour des variables aléatoires stables

quelconques (pas symétriques nécessairement). L’égalité est encore P-presque sûre. Tout ceci
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est développé dans le livre de Taqqu-Samorodnitsky [2].

Enfin une question implicite à ce mémoire :

Est-ce que tout processus SαS, (pas nécessairement défini par une famille

d’intégrales SαS), a un processus SαS défini pas des séries de Le Page et qui

lui soit égal en loi de processus ?

Une erreur a priori dans l’article de Marcus-Pisier [5] était de croire que tout processus SαS

(Xt)t∈T pouvait être égal en loi de processus à un processus défini par des intégrales par

rapport à une mesure SαS M sur l’espace mesuré (R,Bor(R), λ) :(∫
R

f(t, x)dM(x)

)
t∈T

, où (f(t, ·))t∈T ⊂ Lα(R),

processus que les auteurs nommaient ”strongly stables” pour lesquels, en vertu du Théorème

5.7 (qu’ils démontraient), il existe un processus défini en série de Le Page qui lui soit égal

en loi de processus, l’erreur résidant dans le fait que l’espace mesuré pouvait toujours être

(R,Bor(R), λ). L’article de Kôno-Maejima [6] signalait alors cette erreur.

Pour répondre à cette question, le théorème suivant (que nous admettrons et qui généralise

le Théorème 4.31 de représentation sur Rd que nous avons démontré) nous dit que tout

processus SαS est toujours égal en loi de processus à un processus défini comme une famille

d’intégrales SαS par rapport à une mesure SαS sur un espace mesuré (E, E ,m) :

Théorème 6.1 (Bretagnolle, Dacunha-Castelle, Krivine (1966), Schreiber (1972))

Soit T un ensemble non vide quelconque. Soit (X(t))t∈T un processus SαS pour un certain

0 < α < 2. Alors il existe un espace mesuré (E, E ,m), une mesure SαS sur (E, E ,m) et une

famille (f(t, ·))t∈T ⊂ Lα(E) telle que :

(X(t))t∈T
L
=

(∫
E
f(t, x)dM(x)

)
t∈T

.

Néanmoins, l’espace E considéré dans ce théorème peut dans cette construction être com-

pliqué à exploiter, car E n’est pas en général R, [0, 1], ou Sd.

Nous avons une réponse positive à cette question avec E = R, ou [0, 1] pour une grande classe

de processus SαS, présentée dans le livre de Taqqu-Samorodnitsky [2].

D’abord le Théorème 4.31 de représentation sur Rd qui concernait une famille finie de lois

SαS, se généralise à une suite de lois SαS (il donne une représentation pour les lois fini-

dimensionnelles), et l’espace E est [0, 1].

Ensuite lorsque le processus (X(t))t∈T vérifie une condition de séparabilité que nous définissons

ci-dessous :
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Définition 6.2 Soit (X(t))t∈T un processus stochastique. Alors on dit qu’il vérifie la condition (S)

s’il existe un sous-ensemble T0 dénombrable de T telle que pour tout t dans T , X(t) est la

limite en probabilités quand n tend vers +∞, de somme de la forme :

n∑
j=1

an,jX(tn,j), où :

{
{an,j | n, j ∈ N∗} ⊂ R,

{tn,j | n, j ∈ N∗} ⊂ T0

.

Et nous avons alors :

Théorème 6.3 Soit α appartenant à ]0, 2[. Et soit (X(t))t∈T un processus SαS vérifiant la

condition S, alors :

(X(t))t∈T
L
=

(∫ 1

0
f(t, x)dM(x)

)
t∈T

,

où (f(, t·)t∈T ⊂ Lα([0, 1]), et M est une mesure SαS sur l’espace ([0, 1],Bor([0, 1]), λ[0,1]).

Je remercie chaleureusement M. Ayache pour ce mémoire fait ensemble.
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