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Résumé

En janvier 2022, j’ai pu lire le sujet de mémoire que proposait M. Ayache sur les
mouvements multifractionnaires. Cherchant un sujet mélant analyse fonctionnelle et pro-
babilités, ayant suivi au premier semestre le cours de M.Tudor sur les processus et ayant
été passionné par des questionnements sur le mouvement brownien fractionnaire, le su-
jet a piqué de suite ma curiosité. Puis le mémoire s’est dirigé vers 1’étude des séries de
Le Page, d’abord pour les lois symétriques stables, puis pour les processus symétriques
stables, afin de présenter une application : la démonstration de 'existence de versions
d’un processus réel stable harmonisable multifractionnaire vérifiant quelques hypotheses,
dont les trajectoires sont holdériennes.

Je remercie 'université de Lille pour ’accueil de I’étudiant spécial que je suis de par ma

situation, ainsi que M.Ayache pour sa disponibilité, son écoute.

Mots clé : Lois et processus symétriques stables, séries de Le Page, continuité holdérienne, mouvement

multifractionnaire.

1 Introduction

Ce mémoire commence d’abord par un questionnement que j’ai eu lors du cours que
j’ai suivi sur les processus stochastiques, concernant le mouvement brownien fractionnaire
et sa variation quadratique. Ayant croisé plusieurs démonstrations erronées de ’absence de
variation bornée (donc de variation quadratique), lorsque 0 < H < %, j’ai alors cherché un
véritable argument. M. Ayache m’a indiqué quelques pistes. J’en fais I'exposé.

Ensuite, on va s’intéresser a des extensions non gaussiennes du mouvement brownien
fractionnaire. Nous allons essentiellement étudier les processus symétriques a-stables, leurs
développements en séries de Le Page ainsi que leurs applications dans I’étude de la régularité

des trajectoires de certains de ces processus. Mon étude des lois et processus stables repose



sur [2], le livre de Taqqu-Samorodnitsky, avec en parallele le livre [3] de Feller, et celui de
Gnedenko [1]. Pour les séries de Le Page, tout d’abord encore [2], mais aussi l'article de
Marcus et Pisier [5], et le second article [7] de Kono et Maejima. Enfin le dernier théoreme
relatif a la continuité des trajectoires d’une version d’un processus réel hamonisable stable
multifractionnaire est 'aboutissement d’une synthese de ’étude des deux articles de Maejima
[6], et [7], de I'article de Dozzi-Chevchenko [3], et de la these de Boutard, deuxieéme chapitre
[9).

Nous allons passer en revue plusieurs théoremes et rappels qui seront utiles pour ce

mémoire. Rappelons tout d’abord un théoreme de Paul Lévy :

Théoréme 1.1 (Paul Lévy) Soit (X,)n<1 une suite de variables aléatoires réelles indépendantes
sur le méme espace probabilisé (Q, F,P), alors les convergences P-presque sire, en probabilité
et en loi de la série ZX” sont équivalentes.
n>1
Notation 1.2 Soit E un espace topologique muni de sa tribu borélienne Bor(E).
Soient T =N, ou T = [0,a], ot a est réel positif, ou encore T = [0, 4o0].
Nous notons T®™N") ensemble des parties finies d’éléments appartenant o T.

Soient I, J € TN tels que J C I.

El - E
Notons ¢y, : , la projection canonique.

(@i)ier = (%5)jes
Supposons donnée une famille de probabilités (pi1) jcrave), ot juy est une probabilité sur I'espace

(EI, Bor (EI)) .

Nous notons ¢r j(ur) la loi marginale de pup sur lespace E7.

Définition 1.3 Awvec les notations précédentes, on dit que la famille de probabilités (jir) jcpav+)

est cohérente si pour tous I,J € T™) tels que J C I, on a : ér,0(pr) = .

Nous rappelons le théoreme de consistance de Kolmogorov :

Théoréme 1.4 (Théoréme de consistance de Kolmogorov) Soit E un espace polonais
muni de sa tribu borélienne Bor(E).

Soient T un ensemble non vide quelconque (indénombrable, ¢’est le cas intéressant).

Soit (pu1) jerove) une famille cohérente de probabilités sur les ensembles ET, pour tout I ap-
partenant o TN,

Alors il existe un processus X = (Xy)ier sur Uespace probabilisé (Q, A, (A¢)ier, P), pour
lequel (E, Bor(E)) est l'espace de ses états, les pup sont ses lois fini-dimensionnelles, et ot
Q=ET A=0({X;,t €T}), et (Ar);er est sa filtration naturelle de X.

De plus, sur cet espace probabilisé, la probabilité P est unique.



Nous ferons appel dans ce mémoire le corollaire du théoreme de consistance de Kolmogorov,

réservés au cas d’un processus gaussien :

Corollaire 1.5 (Existence de processus gaussiens) Soient T' =N, ou T = [0,al, ot a
est un réel strictement positif, ou encore T = [0, +o0].

Et soientm : T — R, et T : T? = R deux fonctions numériques telles que pour tout entier
n =1, et pour tout sous-ensemble I = {t1, --- ,tn} C T, la matrice I'1 = [(ti, t;)],<; ;<
soit de type positif (on dit alors que la fonction T' est de type positif).

Alors il existe un processus gaussien réel (Xi)ier unique a équivalence prés, tel que pour
tout I = {t1, --- ,tn} C T, le vecteur X; = (Xy,, -+, Xy,) est de loi Ny, (mpr,Tr), avec

mp = (m(t1), -, m(tn)).

PREUVE DU COROLLAIRE 1.5
D’apres le Théoréme 1.4 de consistance de Kolmogorov, il suffit de montrer que la famille des

lois (Ncard(l) (mI,F1)>I€T(]N*) est cohérente.

Soit I = {t1, -+ ,tn} C T, et soit J une partie de I, notons d le cardinal de J. Et soient p s
et pr les lois respectivement sur R? et R™ correspondantes.

Alors, i désignant la fonction caractéristique du vecteur X7, pour tout u appartenant & R™ :

— . 1

pr(u) = exp (i (my, u);) exp <—2 (u,FI(u)>I> .
(De méme en remplacant I par J, < . ,. >; désignant par exemple le produit scalaire sur
R%)

Notons ¢; j(us) la fonction caractéristique de la loi marginale ¢y j(u) de pur sur RY, alors

pour tout (uj)jeq1, ..., ay € R? :

u;, sit € J
prg [(uj)jes] = pr(a), o : u € R™ tel que : @; = ' :
0,siiel/J

Donc, si v désigne le vecteur de R? égal & (u;)jey :

) = e ) (3 (@.a(w), )

— exp (i (my, v) ;) exp (-i <v,rJ(v)>J) |

Donc, on a bien : 7y [(uj)jes] = iy [(u;)jes] . d’ou le résultat. O



Rappelons a présent le critere de continuité de Kolmogorov :

Théoréme 1.6 (Continuité de Kolmogorov) Soient T'= N, ou T' = [0,al, ot a est un
réel strictement positif, ou encore T' = [0, +o0[. Et soit X = (X¢)ier un processus a valeurs
dans RY.

Supposons qu’il existe trois réels strictement positifs p, 3, ¢ tels que :
Vs teT:B[|X; — X, <clt—s|'HP.

Alors il existe une version X de X a trajectoires continues.

De plus, sur tout compact [0,b] C T, ot b > 0, les trajectoires de X sont ~v-holdériennes, pour

tout v appartenant a ]0, é [ :
p
VweQ3K, >0]|Vs,tel0,b]:|X(w)— Xs(w)| < Kylt—s|.
Et voici un version dans le cas d’un processus gaussien centré :

Corollaire 1.7 (Continuité de Kolmogorov-Centsov) Soit (X;);>0 un processus gaus-
sien centré et soit a > 0.

Supposons qu’il existe des constantes c,n strictement positives telles que :

Vs, tel0,a: B [(Xt . XS)Q] <cft — s|".

Alors, pour tout v appartenant a ] 0, g [, il eziste une version de (X¢)¢>0, notée (X¢)i>0 ayant

ses trajectoires y-holdériennes sur [0;a).

PREUVE DU COROLLAIRE 1.7 : Soient 0 < s < t < a, alors Xy — X suit la méme loi que
\/E [(X; — X,)]?] Z, ott Z suit la loi N'(0,1). Dés lors, pour tout p > 1 :

B(|X, — X,J"] = {E[(X; — X,)2]}* B(Z])
< CEE(ZIP) |t—s| %

Le Théoreme 1.6 de continuité de Kolmogorov s’applique : pour tout v appartenant a l'in-
1 1 ~

tervalle }O, - X <% - 1) [ = ]0, g - = [, (X¢)e>0 admet une modification (X;);>o dont les
p p o n

trajectoires sont <y-holdériennes sur [0,a]. Faisant alors tendre p vers -+oo, on obtient le

résultat annoncé. O



Enfin voici un lemme explicitant des intégrales que nous rencontrerons, sur les lois gamma :

Lemme 1.8 Pour tout a appartenant a |0, 1[, et pour tout A strictement positif :

i)
too 1 e—/\u @
i)
+oo p(=At)T g “A+i T(1-a)
jﬁ e dr = X — (),
)\1—04
ot Y désigne la fonction caractéristisque de la loi y(1—a, X), soit : Y(t) = m

—1

PREUVE DU LEMME 1.8 :

i) Tout d’abord, a I’aide d’une intégration par parties, nous avons :

400 1— —Au 1— —Au T A +o0o ,—Au A 400 _—Au
/ %du = [6] + / C  du= / c du, (1.1)
ulta
0 0 0

—au® 0 o u® o u®

puisque :

= Au A

€ 11—«

a) a €]0,1[, donc ——— ~ ——u —— 0.

—au® u—0t « u—0t+

1— ef)\u

b) Comme a >0, lim —— =0.

u——+00 ue

Considérons a présent la loi gamma de parametres 1 — a et A, alors :

+o00 -« +oo —Au _
/ Aie_A“u_adu =1, dou: / C _du= ra 04)‘ (1.2)
0 F(l — Oé) 0 e M-

Ainsi grace a (1.2), (1.1) devient :

Aa—a/+M1_e%me
_F(l—a) 0 U1+a '

ii) La calcul est analogue a (i) :

B N B i e O A4 [T .
I\ = ! / £ dr= Rl / e M gp(lma) =1z gy
0 0

o x® o
A+ F(l—a)
p— 1

) (),



Voici une premiere application de ce lemme, nous allons rencontrer une constante c, dans

tout le mémoire, je souhaitais 'expliciter :

.l , . T sin(x) -
Proposition 1.9 Soit le réel ¢, = —dz| , pour tout o dans 10,2]. Alors :
0 X
1—
a Ta s StaFl
r2-ajcos (%)
o = (2 — «) cos 5 (1.3)
2
— sta=1
T
0 sin(x)
PREUVE DE LA PROPOSITION 1.9 : Nous allons calculer 'intégrale : / —duw.
0 x
+00 o3
— Lorsque a = 1, on reconnait 'intégrale de Dirichlet : / wdm = %
0 X
— Soit 0 < 8 < 1, et soit A > 0.
oo S(=A+i)z _ |
Considérons I = / 577 dz. D’apres le Lemme 1.8 (ii), nous avons :
0 X
“A+1 T'(1-p5)
I, = 5 X NEE ¥(1), (1.4)
A8
ou v désigne la fonction caractéristisque de la loi v(1— /3, \), soit : ¥(t) = O
—1
Des lors, (1.4) devient :
A —i)P
I = _(ﬁ)m —8). (1.5)
Nous avons : A —i = VA2 + 1 ¢ o1 ) est la mesure dans | — 7, 7] de I'argument de
A—1. .
T
Nous avons : tan(#)) = —— — —o0, donc 0, ——— ——.
v (6) A A0+ Aot 2
Des lors, en reprenant a (1.5) :
_ TA=5) /s SN I(1-p5) _izs
I, = —— 5 (M +1)%e oo B e 2P, (1.6)
D’autre part, d’aprés le critére de convergence de Dirichlet-Abel, puisque la fonction :
+oo o3
x — e~ décroit vers 0T, quand x tend vers 400, et comme I’intégrale : / sn;%dx
T
converge : 0
- B e~ sin(x) sin(z)
Jm(Iy) = /0 oS dz " /0 o) dz (1.7)



Alors, en identifiant les parties imaginaires dans (1.6) et (1.7), nous avons :

/0+OO S;I;le) dz = F(lﬁ_ﬁ) sin (g,@’) (1.8)

De cette situation, si nous considérons & présent 1 < o < 2, alors f =a — 1 € |0, 1],

nous avons, grace a (1.8) :

[ e [ e = H D (5) = PR e ().

i [lo 1] = sin (5 = o) = —eos (50)
: n f— — — — S1 _— — = — —_ .
parce que : si1 B « S B B (0% COS B (0%

Pour le cas 0 < a < 1, considérons cette fois la partie réelle de Iy. On identifie a & f.

+o0 —Az -1
Re(l) :/ e~ cos(x) e
0

B+l

Le relation (1.6), nous dit que :

Re(1y) - cos <E5) (1.9)
Or, par intégration par parties :

400 —AT -1
/ e~ cos(x) e
0

x/3+1

1 e Mcos(z)—1]77° 1 /+°° e cos(z) + e~ sin(z)
—|_= _ = dz
B 8 0 B Lo 8
_ 1 oo Ne AT cos(ac)d$ 1 o0 e~ AT gin(z) d.
B Jo a? B Jo a?
car comme 0 < 8 < 1:
-
e cos(r) — 1 P 4 ot P 0, et cos(z) 1
b z—+00 wPexp(Az) 2f 2o+
Le critere de convergence de Dirichlet-Abel s’applique, puisque e~ ** décroit vers 0F :
Foo Nz
/ e cos(x)dx 0.
0 1'6 A—0t
Ainsi : | oo g
Re(l)) — —— Sin(@) g, (1.10)
A—0t 6 0 P

En identifiant les limites dans (1.9) et (1.10), nous avons donc, comme 0 < § < 1 :

/0+00 sir;/(ﬁ:n) dz =T(1— 5) cos (gﬁ) = w cos (gﬁ) .




2 Etude du mouvement Brownien fractionnaire

2.1 Une premiére caractérisation

Proposition 2.1 Soit H > 0. I eziste un processus gaussien centré (Bp(t))i>o0 admettant

comme fonction de covariance, pour tout s,t réels positifs :

Cp(s,t) = (52H + 25 |t — s|2H) , (2.1)

N | =

st et seulement st 0 < H < 1.

PREUVE DE LA PROPOSITION 2.1 : (inspirée du livre de Nourdin [1])
Il s’agit de montrer que 'y est de type positif si et seulement si 0 < H < 1.
— Si H >1: Soient t1 = 1,to = 2,a1 = —2,a9 = 1, alors :

a% FH(tl,t1>+2 a1a9 FH(tl,tQ) + a% F(tg,tg)
=437 2 (B + 37 — |ty — 62 + 13
=4-2014+2% — 1) 4220 =4 221 <,

car H > 1. Donc I'y ne peut étre de type positif.
1
— SiH=1:Ty(s,t)= 5(52 + 1% — (t — 5)%) = st, alors :
Vle,th, ,tdZO,Val, ,adE]R:

2
Z aga 1 (te, t) = Z agtrait; = (Z%%) >0

1<k,i<d 1<k,1<d

Donc I'y est bien de type positif.

— Si 0 < H < 1: Faisons usage du Lemme 1.8, (i) avec A = 2% et @ = H. A l'aide d'un

2

changement de variable u = v*, nous obtenons :

20— H /+w1_6_m2udu_H/+ool_eWX2v dw
T -H) J, ul+tH - T(1-H) J, v2(1+H)
2,2 (2.2)

2H Tl e
= ——dv.
F(l _ H) /0 pl1+2H v

Appliquant cette derniére relation a s, t et |t — s| :

2

25 too 1 _ —s2v? _ %02 —(t—s)%v
2 20— ?H = H>/0 ¢ ¢ re dv  (2.3)

- F(l _ pl+2H



Or,

(1 . 67521)2) (1 . 67t2v2> 4 67v2t2 (6721)27&3 o 1) 671}252

—1— 6—32112 _ 6—t2v2 + 6—v2(t2+s2) + e—v2(t2—2st+32) _

—t202 6—32112 - e—vz(t—s)2.

2042, 2
6U(t+s)

=1-—e¢
Des lors, en remplagant dans (2.3) :

too (1 —e V) (1 — v
w ),

r(1— vi2H

2H 2y g2H

+o0 6—v2t2 (621121,‘5 o 1) e—v252

B ;
F(l _ H) 0 pl1+2H v
2H +o00o (1 — 671}21&2) (1 — 671)282)
- F(l _ H)/O pl+2H dv
n 2H " X oon [tee (vt)"e‘”Qtz(vs)”e_”ZSQd
— — v.
I'(1-H) 4= nlJ pl+2H
(2.4)

Des lors, pour tout entier d > 1, pour tous t1, --- ,tq réels positifs ou nuls, et pour

tous réels ay, --- ,aq, en appliquant cette derniere relation (2.4) :

_ H too 1 —p2¢2 —02¢2
Z FH(tk,tl)akal = FiH_) ) W X Z (1—6 k) (1—6 l)ak(ll dv

(1-
1<k,1<d 1<k,l<d
oo " ak(vtk)nfUQti} [al(vtl)neiv ﬂ
H AU ® 1<k,i<d
+ P(1—H) " ~ v1+2H
d 2
> (1= ) o
H /+oo 1 4
= v
F(l _ H) 0 pl1+2H
d 2
242
H IX 9n ptoo [Zak(vtk)”e o
- — A=l dv > 0.
I'l—H) n! Jo vi+2H -

D’ot le résultat.
Le Corollaire 1.5 nous dit donc qu’il existe alors un processus gaussien (unique a équivalence

pres) dont la fonction de covariance est 'y, pour 0 < H < 1.
O
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Définition 2.2 Pour 0 < H < 1 le processus gaussien (Bp(t))i>0 ainsi créé est appelé

mouvement brownien fractionnaire d’indice de Hurst H.

1
Remarque 2.3 Lorsque H = 3 on retrouve le mouvement brownien. En effet, pour s,t
réels positifs :

1
r ($7t) = 5 (S+t— ‘t_ 3‘) = min(t73)7

1
2

qui est la fonction de covariance du mouvement brownien.

2.2 Ses propriétés

Propriétés 2.4 Considérons le mouvement brownien fractionnaire (By(t))i>0, pour
0< H <1. Alors :
i) (Bu(t))e>0 est auto-similaire :

Ve>0: (e By(ct)so £ (Bu(t))so. (2.5)

(égalité en termes de loi de processus).

it) (Bu(t))e>0 est un processus a accroissements stationnaires : pour tout h > 0 :

(Bu(t+ h) — Br(h))i>0 est encore le mouvement brownien fractionnaire d’indice H.

(2.6)

iii) (Bu(t))>0 admet une modification dont les trajectoires sont §-héldériennes sur tout

intervalle compact, pour tout § appartenant a |0; H[. Mais les trajectoires du mouve-
ment brownien fractionnaire sont presque surement nulle part dérivables.

i) Variation quadratique : pour tout t > 0 :

(2.7)

PREUVE DES PROPRIETES 2.4, (i), (ii) ET (iii) :

i) Pour un réel ¢ > 0 fixé, (¢c=H By(ct));>0 est encore un processus gaussien centré et

11



pour tous s,t > 0:

Cov (C_HBH (ct), c_HBH(cs)) = ¢ 2HCov (By(ct), By(cs))

o—2H

= [(ct)* + (es)*" — |ct — es|*M]
—2H o 2H

_c o xe ; C[RH 4 PH g2

= Cov (Bg(t), Bg(s)).

D’ou le résultat.
ii) Il faut prouver que pour tout h > 0, (Bg(t + h) — Br(h))i>0 est aussi le mouvement
brownien fractionnaire.

C’est encore un processus gaussien centré, et pour tous ¢, s > 0 :
) M

Cov [By(t+h)— Bg(h),Bu(s+ h) — Br(h)]
=E[(Bu(t+h) — Bu(h))(Bu(s + h) — Bu(h))]
=E(By(t+h),Bg(s+h)) —E(By(t+h), Bg(h))

—E (Bu(h), Bu(s+ h)) + E(Bg(h), Bu(h))
= Cov [Bu(t+ h),Bu(s+ h)] — Cov [By(t+ h), B (h)]
— Cov [Br(h), Ba (s + h)] + Cov [Bg(h), Bu(h)]

1
= % [(t+h)2H + (s + h)*H — |t — s|*] - 5 [(t+ h)2H 4 T — 2H]
1
- % [(s+ h)2H 4+ T — g2H] 4 3 [p?H 4+ p2H)
1
= 5 (P 4+ 5 — |t = M) = Cov [Bu(t), Bu(s))

d’ou le résultat.

iii) Nous avons pour tous t, s réels positifs :

E [(BH(t) - BH(S))2] = Ty(t,t) — 2 Tr(s,t) + Tr(s, s)

_2H | 2H o % (tQH 82 | S‘QH) — |t — 52
(2.8)
Grace & la relation (2.8), le Corollaire 1.7 (continuité de Kolmogorov-Centsov) s’ap-
plique pour v = 2H, et 'on a la continuité holdérienne annoncée.
Néanmoins nous n’avons pas la dérivabilité des trajectoires.
En effet, tout d’abord pour ¢, h positifs, By (t + h) — B (t) suit la loi A(0, t21).

— Byt
BH(HZL 70 it 1a loi N(0,1).

Donc la variable Zp égale a

12



Br(t+h) — Bu(t)

Nous allons démontrer que le taux de variation Y

diverge en proba-
bilité vers 400, quand h tend vers 0.

Soit M > 0, nous avons :

P (‘BH(t+h) - BH(t)‘ - M) _p (th 'BH(H—h) - BH(t)' - Mh1H>

h h
By (t+ h) — By (t) .
=P (‘ ] > Mh
a2
e
=P (|Zy| > Mh'H :/ dz.
(121 ) {Jz|>Mp1-H} V2T

(2.9)

Or, lim+h1_H =0, car H €]0, 1[, donc, par convergence monotone :
h—0

2 2
ef% ef%
dx / dx = 1.
/{|x>Mh1—H} V2T h—0t Jr V2T

By(t+h) — Bg(t
Ainsi (2.9) nous donne, pour tout M > 0: P (‘ (t+ f)L i )‘ > M> — 1.

h—0*
D’ou le résultat.

]
. ) 1
PREUVE DE LA PROPRIETE 2.4, (iv) POUR 3 <H<1:
Soit A = (tg, -+ ,tp),oun > 1 et 0=ty <t1 < - < th1 < t, = t. Et notons
A= t — 1.
og%?f_l k+1 — tk
n—1
Alors, en désignant par Ta la somme Z (Br(tps1) — Br(te)? :
k=0
n—1
E(Tal = Y. B|(Bu(ty + 1) - Bu(t))’
k=0
n—1
=Y [ter1 — te| " E(Z?) (2.10)
k=0
n—1 n—1
= [terr — PP < JAPTTEY T (b — ) = (AP
k=0 k=0

1

Des lors, lorsque 3 < H <1, lAl\imJA\QH_l = 0, et la relation (2.10) offre une convergence
—0

dans L!(Q) vers 0 de la variation quadratique.

Dans le cas H = 3 nous avons & faire au mouvement brownien, nous allons prouver la

convergence dans L?(2) de Ta vers t.
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Nous avons pour k dans {0, --- ,n —1}} : Bi(ty41) — B
2
loi N(0,1). Donc :

(tk) = /Tk+1 — tiZ, ou Z suit la

1
2

n—1 n—1
|A|—0
ITa =t 72y = D> Var [(ter1 — 1) Z%] =2 > (tegr — tr)> < 2|Alt —— 0.
k=0 k=0

Commentaire 2.5 C’est le dernier cas de la variation quadratique qui m’a longtemps in-

terpellé...J ai croisé le raisonnement suivant.

kt
En prenant la subdivision <2n, 0<k< 2”) de Uintervalle [0,t], alors, si A, désigne l’en-
semble des subdivisions (tg, --- ,t,) de cardinal n de l'intervalle [0, 1] :

n—1

limsup sup K
n—+oo (t0,~~- ,tn)EAn

(Br (tk+1) — BH(tk))2]
3 (s (52) - ()

Mais grace a (2.6), alors la membre de droite devient :

(1) m(2))]- £

k=0

> limsup E

n—-4o00

E

Or, comme 1 — 2H > 0, alors 2"(0—2H) diverge vers +oo.

Nous obtenons une divergence vers +oo dans 'espace L'(2). Nous n’obtenons pas de diver-
gence en probabilité avec ce raisonnement.

La divergence vers +o0o était P-presque sure en fait. Méme plus, il y a divergence IP-presque
sure vers +o0o de la variation (ce qui impliquera alors celle de la variation quadratique par
linégalité de Cauchy-Schwarz). Grace au lemme qui suit, la divergence en probabilité sera

vrate.

Lemme 2.6 Si une suite de variables aléatoires diverge IP-presque surement vers +oo, alors

cette suite diverge en probabilité vers 4o0.
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PREUVE DU LEMME 2.6 : Ceci se traduit par :
FJQeF|PEQ)=1,et VM >0,Vw € Q,IN >1|Vn> N : |X,(w)| > M.

Ce qui donne, pour tout M > 0 :

1 =P |limsup{|X,| >M}] =P | | N {IXul > M}| =limt P | () {|Xa| > M}
n—+00 N>1n>N N=too {n>N

Des lors, si 'on note Ay = ﬂ {|Xn| > M}, alors : Ay C {|Xn| > M}.
n>N
Et alors : P(Ayx) < P(|Xn| > M) < 1.

Faisant tendre N vers 400, nous en déduisons que Nlim P(| Xn| > M) =1.
—+00

M étant arbitraire, nous avons bien que X,, diverge en probabilité vers 4oo.
O

La démonstration de la divergence P-presque sure a besoin d’un lemme sur les vecteurs

gaussiens :

X
Lemme 2.7 Soit !
Xa

> un vecteur gaussien centré dans R2.

Supposons que Var(X;) = Var(Xy) = 1. Alors :

Cov(|X1], | Xa|) < [Cov(X1, Xa)]. (2.11)

a . . N
) sa matrice de covariance, et ou :
a

1
PREUVE DU LEMME 2.7 : Soit I' = <

Cov(X1, Xo) = a €]—1; 1. Soit &1, e5 deux variables aléatoires indépendantes suivant N/ (0,1).

Alors :
14+a l1—a
X, 5 €1+ 5 £9
X,) | N+a 1-a |
9 1T\ g 2

En effet, pour tout (x,y) dans R?, d’une part :

>

(2.12)

E {exp[i(z X1 + yX2)]} = exp [—; (x y) x ' x (;)] = exp [—; (:):2 + 2axy + yz) .
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D’autre part, comme £1 L €9, et comme €1, 9 suivent la loi N'(0,1) :

E{exp [z <(x+y)\/1_;a51+(xy) 1;a52>]}

P | e |1 -0

= exp [; (:1:2 + 2axy + yQ)} .

Nous avons : |[Cov(X1, Xo)| = |a|, et E(|X1|) = E(|X2]) =
Et : Cov(|X1]|Xa|) = E(1X1Xz[) — E(|X1[)E(|X2)).

Mais grace a (2.12) :
|</1+a€l+ 1-a )(/1—1—61 1—-a )H
2
(2.13)

1+a 1-— 1+a l—a
—]EH > 5%— 5 5%]<E( > 2 5)

R
3

E (X1 X,]) =

\S1 V]

Les variables e1, g9 étant indépendantes, et suivant la loi A(0, 1), alors :

lta 5, 1-a , 1+a\®> [(1-a\?> 1+a?
E _ - . 2.14
< y 1t ga ( 2 ) T\ 2 (2.14)
1+ a?
(2.13) et (2.14) donnent alors : E(|X1X3]) < 5
14+a* 2
Et alors : Cov(|X1), | Xa|) < J;“ _ 2
v
1+a* 2
Une étude rapide de la fonction f définie sur [—1;1] par f(a) = 5 Ty la|, montre
T
qu’elle admet comme maximum : 5 < 0, ce qui prouve finalement (2.11).
7r
U

PREUVE DE (2.7) DANS LE CAS 0 < H < % : Nous allons donc prouver une divergence IP-

k
presque sure vers +oo de la variation pour la subdivision : <2n, 0<k< 2") de l'intervalle
[0,1].

Considérons la variation :

2m—1
kE+1 k
s E () ()]
k=0
D’apres l'inégalité de Bienaymé-Tchebychev :
Sn 1 E(Sn)> 4 Var(S,,)

Pll=——==—-1>=-)= P[|S —E(S,)|> < —. 2.15
(et =1 73) = p (s msan= 52 ) < S e

16



k+1 k
En posant pour k dans {0 ,---, 2" —1} : Ay = By ( + ) — By <2n> , NOUS avons :

2n
2"—1
Var(S,) = > Var(|Age)+2 Y. Cov(|Apul,|Aml). (2.16)
k=0 0<l<k<2n—1

(Bu(t))t>0 étant gaussien centré, grace au Lemme 2.7 & la relation (2.5) puis & la relation
(2.6), d’une part :

Cov (|Am k|, |Ami]) <|Cov (Amk, Amy)l
= 272" |Cov [By(k + 1) — By (k), Bu(l+ 1) — By (D)]| (2.17)
= 272 \Cov [By(k — 14 1) — By (k — 1), By (1)]]

Et d’autre part :

2" —1 2" —1

ZVar(]AH7k|) — ZQiQnHVaf(’BH(l)D _ on—2nH
k=0 k=0

(2.18)

-
3

Combinant les relations (2.17) et (2.18), (2.16) devient :

2
Var(S,) <2n2H « _Z_ 49 272H \Cov [By(k — 1+ 1) — Bp(k — 1), By (1)]].
r(Sy) < T OSK%M |Cov [Br ( ) — Bu(k—1), Ba(1)]|

(2.19)
Considérons pour x > 0 :
1
9(z) = Cov(Bu(z), Bu(1)) = E(Br(2), Bu(1)) = 5 (@ +1 |z —1]P7).
Alors, pour tout entier naturel p non nul :
1
g +1) =g = |+ D +1 - +1-1*" = (> +1-(p—1)*")]
1
=5 |+ 1"+ (p -1 = 2p™]
2H 2H 2H
S <1+1> +<1—1> —9
2 P P
2 2H H(2H -1 2H H(2H -1 1
L HEHIY 2 SR (1)
2 p P P p p

= p?72 x [H(2H — 1) +o(1)],

qui est le terme d’une série convergente, puisque 0 < H < 3
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+oo
Donc, désignons par M la somme Z lg(p+1) — g(p)|.
p=0
Ainsi le second terme dans (2.19) va étre majoré, en effectuant le changement k — 1 = p :

2 > 27k —141) - f(k—1)] <2M x 2" x 272
0<i<k<2n—1

Et donc (2.16) devient :

2
Var(S,,) < 2" 2 <m + 2M> : (2.20)

Ensuite, de nouveau grace a (2.5) puis a (2.6) :

n_ 1 2
k+ k
2 _ _ ik
= e ([ () - (5
k=0
i ? (2.21)
=27 N E(IBu(k+1) - BH(k‘)I)]
k=0
2
— 2—2nH % (2”E(|BH(1)|))2 — 2« 2—2nH+2n‘
T
Combinant enfin (2.20) et (2.21), (2.15) devient :
P<’5—1‘>>§4V&“(Slg4< +2M>2”,
E(Sn) 2 [E(Sn)] V2r
qui est le terme d’une série géométrique convergente.
. . Sn 1
Le lemme de Borel-Cantelli affirme que : P | lim sup -1 > = = 0.
n—-+0o E(Sn) 2
Ou encore : g )
P ( liminf C 1<zt =1
(ﬁﬂ& {’E(s,ﬂ) = 2})
Il existe alors un événement 2* appartenant a F de probabilité égale a 1 telle que :
Sp(w) 1
", 3 N >1 > N, : -1/ < =
VweN, o(w) >1|V¥n > Ny(w) ‘E(S’n) '_2
Alors : 5u(w) . E(S,)
nW . n
> = . S (W) > . 2.22
E(Sn)_2’801t Sp(w) > 5 (2.22)

1
Mais comme 0 < H < 5 (2.21) nous dit que E(S,) diverge vers +oco. Donc, S,, diverge bien

vers +o0o, IP-presque stirement.
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2n—1 2

kE+1 k

Enfin, notons la variation 7, = E [BH ( 2_; ) — By (271)} . Larelation (2.22) et I'inégalité
k=0

de Cauchy-Schwarz donne, P-presque strement :

0< E(Sn) < S, <V2\/T,.

2
L’égalité (2.21), donne alors :
[E(S,)]? _ 22n—2nfn 1-2H
T, > = — — xon( )
" xom o or oo OO

1
car0 < H < 3 Ainsi nous avons la divergence IP-presque stre vers +oo de 7T),. Ce qui implique

1
que la variation quadratique du mouvement brownien fractionnaire lorsque 0 < H < 3 est

infinie. O

3 Les lois symétriques stables

Nous présentons dans cette section, une liste de définitions et de propriétés/théoremes

sur les lois stables, que nous admettons. Nous préciserons les références.

3.1 Définition et propriétés élémentaires des lois stables, cas symétrique
3.1.1 Indice de stabilité

Définition 3.1 La loi d’une variable aléatoire réelle X est dite stable ou de loi stable si pour

tous réels strictement positifs a,b et toutes copies X1, Xo indépendantes de X, il existe deux
réels ¢ et d tels que :

aX; +bXs £ cX +d. (3.1)

On dit que X est strictement stable si pour tous réels a, b strictement positifs, et toutes copies

X1, Xo indépendantes de X, il existe un réel c tel que : aXq1 + bXo £.X.

Remarque 3.2
i) Si X a pour loi le dirac d,,, pour un certain xg € R, alors X est stable. En effet,
pour deux copies indépendantes X7, Xo fixés de X et pour deux réels a, b strictement
positifs fixés, déterminons c et d tels que : aX; + bXo £.x +d.
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En passant par les fonctions caractéristiques, pour tout ¢ réel :

¢aX1+bX2 (t) = ¢aX1 (t) % (beQ (t)
= ¢, (at) X ¢x,(bt) = %0 x (bteo

= D0 — 6y x (1),

Il en résulte que ¢ = a + b, et d = 0. Ce cas est pathologique et n’a pas vraiment
d’intérét.

ii) Nous rappelons qu’une variable aléatoire est symétrique (ou est de loi symétrique), si
les lois de X et de —X sont les mémes.
Des lors, une loi symétrique stable est strictement stable (réciproque fausse a cause
de (i) par exemple), car aX; + b X2 est de méme loi que (a — b) X, puisque Xo et —Xo
sont de méme loi. En effet, pour deux copies indépendantes X, Xo de X et pour deux
réels a, b strictement positifs, soient ¢ et d deux réels tels que : a X7 + bXo £ox +d.

Supposons d non nul. Alors, par symétrie de X1, Xo et X, nous avons :

cX+déaX1+bX2 £ —(aX1 + bX>) £ _cX-dEex—d
Dot : ecX +d £ X —d Ce qui équivaut, pour les fonctions caractéristiques, pour

tout ¢ réel :
Pex+d(t) = dex—da(t) = E [ei(cx+d)t} =E [ei(cx_d)t} = MU (e"") = e VIR (e"").

. T .
Zidt —, nous obtenons : e =1,

Donc, pour tout ¢ réel, e
P 2d

= 1, en particulier, pour t =

ce qui est faux. D’ou le résultat.

Lemme 3.3 Soit X une variable aléatoire réelle stable. Alors, si pour n > 1, S, désigne la
somme de n copies indépendantes de X nommeées X1, -+, X, :

i) 1l existe cp, > 0, et un réel d, tels que Sy, £ cnX + dy.

i) 31 ael0,2 |Vn>1:c, =na

Théoréme 3.4 Soit X une variable aléatoire réelle. Alors elle est stable si et seulement si
la relation (3.1) de la Définition 3.1 a lieu, et alors :

3lae€]0,2]|Va,b>0:c*=a"+0b" (3.2)
Corollaire 3.5 Une variable aléatoire réelle X est stable si et seulement s’il existe une suite

de réels strictement positifs (cy), et une autre suite de réels (dy,), telles que pour tout entier
n

naturel non nul n, et toutes copies X1, --- , X, indépendantes de X : S, = ZXk £ cn X +dy,.
k=1
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Définition 3.6 Soit X une variable aléatoire réelle stable. L’indice o défini de maniére

unique dans le Lemme 3.3 et le Théoréme 3.4 est appelé indice de stabilité de X. X est alors

dite «-stable.

Remarque 3.7
— Dans la démonstration de tous ces résultats, nous démontrons qu’une loi normale est
2-stable, strictement 2-stable quand elle est centrée (car symétrique). D’autre part,
les lois 2-stables sont les seules lois stables a posséder un moment d’ordre 2 fini (car

2 = a?+b?%, donc par unicité

appliquant la variance a la relation (3.2), nous obtenons : ¢
de l'indice de stabilité : o = 2).
— Les démonstrations du Lemme 3.3, du Théoreme 3.4, et du Corollaire 3.5 sont exposées

dans le livre de Feller [3].

3.1.2 Domaine d’attraction

Définition 3.8 Soit X wune variable aléatoire réelle. On dit que la loi de X possede un

domaine d’attraction s’il existe une suite (Yy), de variables aléatoires i.i.d, une suite (an)n

de réels strictement positifs et une suite (by,), de réels telles que :

1 n
il (§ Y, — bn> £ . x (3.3)
an, 1 n—-+oo

On dit alors que la loi commune aux Y, appartient au domaine d’attraction de la loi de X.

Théoreme 3.9 Une loi est stable si et seulement si elle posséde un domaine d’attraction.

3.1.3 Fonction caractéristique d’une loi stable

Définition 3.10 Soient o, 0,8, tels que 0 < a <2, 6 >0, et —1 < B < 1.
Notons Sy (o, B, 1) la loi dont pour fonction caractéristique de toute variable X qui la suit

est, pour tout réel :

exp [_ana (1 — i sgn(t) tan (%)) + i,ut] ,sta#1

¢X(t) = 2 .
exp [—U\t\ <1 - ;iﬁ sgn(t) log(\t\)) + iut} ,sia=1

(3.4)

Théoréme 3.11 Les lois Sy (0,5, 1), ot 0 <« <2, 0 >0, et =1 < 5 <1 sont exactement

toutes les lois stables.
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Remarque 3.12
— Les démonstrations des Théorémes 3.9 et 3.11 se trouvent dans les livres de Feller [3],

et de Gnedenko [1].
— Nous retrouvons bien sur les gaussiennes (quand « = 2).
D’autre part, la loi S, (o, B, p) est symétrique autour de p si et seulement si § = 0.

Enfin, les lois symétriques stables (Sa.5) sont les lois S, (0, 0,0) de fonction caractéristique :

¢x(t) = exp[—o®|t|]. (3.5)

3.1.4 Propriétés des lois stables

Propriétés 3.13 Soient X, X1, Xo deuz variables aléatoires indépendantes suivant respecti-
vement les lois So (o, B, 1), Sa(o1, P1, 1) et So(o2, B, pe2), alors :
i) X1+ Xy suit la loi So (03, B3, 13) 0t :

_ Biof + Broy

, et : = u1 + po.
oo+ og n3 = 1 T+ 42

1
o3 = (o] +0%)=, B3

i1) Pour tout réel a, X + a suit la loi So (o, B, p+ a).
i11) Pour tout réel a non nul :
a) Sia# 1, alors aX suit la loi S, (|a|o,sgn(a)B, ap) .
b) St a =1, alors : aX suit la loi Sq <\a|a, sgn(a)p, ap — %a (log(]a\)aﬂ)) .
w) Si0< a<2, alors X suit la loi Sy (0, 3,0) <= —X suit la loi S4(0,—03,0).
v) X est symétrique par rapport a p si et seulement si B = 0. Et elle est alors symétrique

st et seulement si p = = 0.
vi) St # 1, alors X est strictement stable si et seulement si p = 0. Dés lors, si X suit

la loi So (o, B, 1) alors X — p est strictement stable.
v) Si =1, alors X est strictement stable si et seulement 3 = 0.

Propriétés 3.14 Soit X suivant la loi Sy (o, B, 1), pour un certain o appartenant a |0, 2.

400 .t —1
Rappelons la constante : co = (/ smix) dx) . Alors :
0 T
1-B

i) lim AP(X > \) = cao® x 2 et lim AP(X < —)) = cq0® x 152,
A—+400 A

—+00
it) Dans le cas ot o = 1, supposons que 3 = 0. Alors, pour tout p appartenant a 10, «f, il

existe une constante co g(p) telle que :

(B (1X[P))? = ca(p)o.

Remarque 3.15 Les démonstrations des Propriétés 3.13 se trouvent dans le livre de Taqqu-

Samorodnitsky [2], et celles des Propriétés 3.14 dans Feller [3].
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3.1.5 Théoréme limite

Définition 3.16

i) On dit qu’une fonction h définie sur R a valeurs dans Ry est a variation lente si elle

vérifie :
. h(cx) . h(cx)
1 =1
ve0: Im S = o R

—1 (3.6)

it) Le moment tronqué d’une variable aléatoire réelle X noté ux est la fonction définie

sur Ry par :

ix(z) = / " 2Py (1), (3.7)

—XT
Théoreme 3.17 Soit X une variable aléatoire réelle non constante.
La loi de X appartient o un domaine d’attraction si et seulement si les deuxr conditions
sutvantes sont réunies :

i) px(x) ~ 227%h(z), ot h est a variation lente.

T—r+00
i1) Soit a =2, s0it 0 < o < 2, et F' désignant la fonction de répartition de X :
1— F(x) F(—x)

> q, avec : p+q = 1.
(3.8)

> p, et

1— F(z) + F(—z) zto "T—F(2) + F(—x) oo+

Théoreme 3.18 La loi d’une variable aléatoire Y appartient au domaine d’attraction d’une
loi stable d’indice 0 < o < 2 si et seulement s’il existe c1,co > 0, non toutes deux nulles,

deux fonctions €1, €5 sont deux fonctions numériques définie sur R tendant vers 0 en +oo, et

une fonction h a variation lente telles que :

L&:l(l’)h(z), et :1— Fy(SL‘) ~ L(L:z(l‘)h(x)v (39)

T—+00 x T—+00 T

Fy(—x)

Corollaire 3.19 La loi d’une variable aléatoire symétrique Y sans atome appartient au do-
maine d’attraction d’une loi stable symétrique d’indice 0 < a < 2 si et seulement s’il existe

c > 0, et une fonction h a variation lente telles que :

2*P(|Y|>z) ~ (c+o0(1))h(z). (3.10)

T—r+00
PREUVE DU COROLLAIRE 3.19 : Grace au théoreme précédent, en posant ¢ = ¢q + ¢ > 0,
comme X est symétrique, alors P(|Y| > z) = 1 — Fy(z) + Fy(—x) et les quantités étant
toutes positives, nous avons :
le1(@)] <6, [e2(a)| <4,
V6 >0,IM > 0|V > M: ¢ 2*Fy(—x) = [c1 + e1(2)|h(x),
(1 — Fy(x)) = [c2 + e2(x)]h(z).
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On en déduit que : z°P(|Y] > z) = [c + e1(x) + e2(z)]h(z).

Il résulte du Théoréme 3.9 le théoréme suivant :

Théoréme 3.20 (limite) Soit (Y,), une suite de variables i.i.d, dont la loi appartient & un
domaine d’attraction, et soit o défini par le Théoréme 3.17. Alors il existe un réel o > 0,
un réel B tel que —1 < 8 < 1, un réel u, une suite de réels strictement positifs (an), et une

autre de réels (by), telles que :

n

1
(Vi — by) _ £ X , ou X est de loi Sy(0, B3, 1).
an ~ n—00

De plus, on a :
i) Si E(]Y1]) < 400, alors b, = E(Y7) convient et alors avec ce choix 1 = 0.
i1) Si la loi de Y1 est symétrique, alors 5 = 0.
iii) Si B(Y?) < +o0, alors a = 2, et dans ce cas : 20 = Var(Y1), X est de loi N'(u, 20?).

Remarque 3.21 Les démonstrations des Théoremes 3.17, 3.18 et 3.20 se trouvent dans le
livre de Feller [3].

3.2 Caractérisations des processus de Poisson

Nous allons dans cette section présenter deux constructions d’un processus de Poisson. La
premiere a ’aide du Théoreme 1.4 de consistance de Kolmogorov va nous permettre de définir
le processus de Poisson canonique. Et la seconde construction a l’aide la notion d’instants

d’arrivée nous permettra de montrer des propriétés qui nous seront utiles.

3.2.1 Construction a I’aide du théoréme de consistance de Kolmogorov

Théoréme 3.22 Soit A > 0. Il existe un processus (unique a équivalence prés) (Ni)i>o a
valeurs dans R, a accroissements indépendants et stationnaires tel que Ng = 0, et tel que
pour tous t et s positifs ou nuls tels que s < t, la variable aléatoire Ny — Ng suit la loi de

Poisson P(A(t — s)).

PREUVE DU THEOREME 3.22 : Soit n un entier naturel non nul, et soient t1,t9,--- ,t, des
réels tels que : 0 < t; < to < --- < t,,. Désignons par I l’ensemble {t¢y,--- ,¢,}. Nous posons
to = 0.

24



Alors, puisque la variable N;, — N;, | suit la loi de Poisson P(A(t; — tx—1)) pour chaque k

appartenant a {1, --- ,n} et par indépendance des accroissements, la loi du vecteur aléatoire
(Niyy Ny = Ny -+, Ny — Ny, ), est 2 P(A(81)) @ P(A(t2 — 1)) -+ @ P(A(tn — tn—1)).
Nous allons démontrer que la famille des lois fini-dimensionnelles est cohérente. La loi pr
désignant la loi du vecteur aléatoire : (INVy,, - -+, Ny, ), cette loi a pour fonction caractéristique
la fonction i telle que pour tous réels uy, -+« ,uy :

wr(uy, -+ u,) =K [emlNﬁl X e X ei“"Ntn]

= [eiuthl X eiUQ[(NQ_Ntl)"'Ntl] X 0 X eiu”[(Ntn_an—l)+"'+(Nf2_Nt1)+Nt1}]

n n
4 up | Nt z( uk>(Nt —N,;) .
= |e (kzzzl ) ! X e kz::Q 2 ! X e X elu"(Ntn_Ntnfl)

(3.11)
Or, si une variable aléatoire X suit la loi de Poisson P(«) pour o > 0, alors sa fonction
caractéristique est, pour tout ¢ réel : ji(t) = exp [oz (eit — 1)] .

Ainsi, puisque la variable N;, — Nj_; suit la loi de Poisson P(A(tx — tx—1)) pour chaque k

appartenant & {1, --- ,n} et par indépendance des accroissements, la relation (3.11) devient :
- Z iuk)Nt ’L(zn:uk> (Nt —Nt ) .
,UJ(Uh e ’un) — E e (k::l L X ]E e \k=2 2 ! X ooe X E [elun(Ntn_Ntn—1)

=exp [ Aty —tg) X ez(k:l ) -1 x exp | A(ta —t1) X ei(kz;u}c) -1 FEEE

% eA(tnftn_l)(emnfl)'

(3.12)
Soit maintenant J C I. La fonction caractéristique qb;(?]) de la loi marginale ¢y j(pr) de
pr sur R7 est la fonction obtenue & partir de I'expression de 7i7(u1, - ,u,) dans (3.12) en
remplacant u; par 0 pour les entiers ¢ tels que ¢; n’appartient pas a J. Il faut montrer que
cette fonction est égale a [1.
L’ensemble J est de la forme : {t3,, --- ,tg,} ou 1 < ki < ky <--- < kg <n, pour un entier
d>1.
Alors de maniére analogue a la relation (3.12), uy désignant la loi du vecteur aléatoire :

(Ntk1 e Ntkd), la fonction caractéristique fiy est définie sur R¢ pour tout w = (wy, - - - , wy)
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par :

d
_ {(£m) (.
py(w) =exp |A(tk, —to) X | e V71 /=1 [ exp | A(tk, —tr,) X [ €V

=,
e

'Ll)j)
—1 NEEE

Aty —thg_, )(eiwd 1) .

xe
. , _ 0,sii¢ {k1, -~ ,kq}
Soit @ I’élément de R™ tel que, pour tout ¢ appartenant a {1, --- ,n} :4; = o
Ui, S11 € {k‘l,"' ,k‘d}
Et soit v I'élément de R? tel que v = (ug,, -+ ,ug,) .

Alors :
61,111 (v) = i (@)

=exp [A(t1 — tp) X e<k:1 k>71 X exp | A(ta — t1) X e(k:2 k)fl X -+ (3.13)

A(tn—tn—1)(e?®n—1)

X e
Observons que si k1 > 0, alors chaque @; est nul pour tout ¢ appartenant a {1, ---  k; — 1}.
Mais aussi, si kg < n, alors chaque 4; est nul pour tout ¢ appartenant & {kq+ 1, --- ,n}.
n kq d d
Ainsi, les quatre sommes Z&k, Z U, Zukj et enfin Zvj sont égales.
k=1  k=k;  j=1 j=1
Et de méme plus généralement, pour p appartenant a {1 <o d}
Z U = Zuk = ZU] (3.14)
k=k,

Considérons, a présent le produit des ki premiers facteurs définissant ¢ j(ur)(v) (relation

3.13)) Nous avons, suite a ce qui précede, et en notant, pour tout réel z : T(x) = e — 1 :
( ; qui p ; P

exXp tl — to (Zuk>] exp ! tQ — tl (Zuk>] < exXp )\(tkl — tkl—l)T Z ﬂk
L k=k1

=exp |A(t1 —to) x T Zﬂk X oo xexp [ Atk —tg—1) Zuk
k‘=k1 k= k'l

kq
il > uk>
=exp |A[(t1 —to) + (t2 —t1) + -+ (try —t—1)] | € <k=k1 -1

(&)
i
=exp |A(tg, —to) | e V=1 / —1
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De maniere analogue, en considérant le produit des k1 + 1-eme, k1 4 2-éme,...,jusqu’au ko-eme
facteur présents dans le produit définissant ¢ ;j(ur)(v) (relation (3.13)), nous avons :

n

n
exp A(tk1+1 — tkl) x T Z ﬂk X - X exp /\(th — tk2_1)T Z ka
k=k1+1 k=ko

kq
=exp )‘(th 7tk‘1)T Zﬂk
k=ko

Ainsi de suite, pour j appartenant & {2, ---,d — 1} pour les produits des (k; + 1)-eme,
(kj + 2)-eme,..., jusqu’au kj;i-eme facteur présent dans le produit.

De sorte que, grace aux égalités de sommes dans (3.14) :

o1,(1u1) (v)

i kq kq

=exp [ A(tg, —to) T Z g | | exp | A(ty, —ty) T Z g | | e exp [N (try — thy ) T(tn,)]
i k=Fk: k=ks
i d d

=exp A (tkl — t(]) T Zvj exp A (tk2 — tkl) T Zvj s eXp [)\ (tkd — tkd—l) T(vd)]

j=1 =2
=i (v).

(3.15)

La dernieére relation (3.15) prouve que la famille (ur) y est cohérente. Le Théoreme 1.4

1er{™
. . A R
de consistance de Kolmogorov donne 'existence et I'unicité a équivalence pres du processus de
cette proposition. Les accroissements de ce processus sont alors indépendants et stationnaires

par construction.

Définition 3.23 Soit A > 0. Le processus (Ni)¢>o construit dans le Théoréme 3.22 est ap-

pelé : processus de Poisson canonique d’intensité \.

Remarque 3.24 Cette caractérisation nous permet de démontrer le lemme de Ross qui

nous sera utile.

Lemme 3.25 (Ross, 1985) Soient (N1(t))i>0, (N2(t))e>0 deux processus de Poisson indépendants
d’intensités respectives \1 > 0, A > 0.
Si (N(t))i>0 est le processus superposé (Ni(t) + Na(t))i>0, alors (N(t))i>0 est aussi un pro-

cessus de Poisson d’intensité A\1 + As.
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PREUVE DU LEMME 3.25 : Nous allons prouver les hypotheses du Théoreme 3.22
Soit N(t) = Nl(t) + NQ(t) Et soient 0 <t <to < ... < t,.
Alors :

Ny(t1), N1(t2) — N1(t1), -+, N1(tn) — N1(tp—1) sont indépendantes,
No(t1), No(ta) — Nao(t1), -+, Na(ty) — Na(tn—1) sont indépendantes.

Mais comme (N1 (t))e>0 et (N2(t))s>0 sont des processus indépendants alors également :

NQ(tl) est indépendante de : Nl(tl),Nl(tQ) — Nl(tl), L ,Nl(tn) — Nl(tn_1>,
Nl(tl) est indépendante de : NQ(tl),NQ(tQ) — Ng(tl), cee ,NQ(tn) — NQ(tn_l).
Donc : Ni(t1) + Na(t2) est indépendante de : Ni(t2) — Ni(t1), -+, Ni(tn) — Ni(tn—1).
Puis de : Ny(t2) — Na(t1), -+, Na(t,) — Na(tn—1). Donc également de :
Ni(t2) + Na(te) — [N1(t1) + Na(t1)], -+, Ni(tn) + Na(tn) — [N1(tn—1) + Na(tn-1)]

Soit 1 <7 <mn—1, alors Ni(ti+1) — Ni(t;) est indépendante des variables : Ny (t;4+1) — Ni(t;),

pour tout j appartenant a {1, --- ,n — 1} et différent d’.
Et de méme : Na(t;11) — Na(t;) est indépendante des variables : No(t;41) — Na(t;), pour tout
j appartenant a {1, --- ,n — 1} et différent d’i.

Les processus (Ni(t))t>0 et (N2(t))e>0 étant indépendants, alors :

Ni(tit1) — Ni(t;) est indépendante des variables No(tj41) — Na(t;), pour tout j appartenant
a{l, ---,n—1}

Et de méme N(t;+1) — Na(t;) est indépendante des variables Ni(t;41) — Ni(¢;), pour tout j
appartenant a {1, ---,n —1}.

Donc la variable :
Ni(tiv1) = Ni(ti) + Na(tivr) — Na(ti) = [N1(tiv1) + Na(tiv1)] — [N1(t:) + Na(ts)]

est indépendante des variables : [Ny (t;j41) + Na(tj4+1)] — [N1(t;) + Na(t;)], pour tout j appar-

tenant a {1, --- ,n — 1} et différent d’:.

D’autre part : Ny (ti+1) — N1(t;) et Nao(t;+1) — Na(t;) suivent respectivement les lois de Poisson

P(A1(tiv1 —ti)), P(Aa(tiy1 — t;)) et sont indépendantes.

Alors : [Ni(tit1) + Na(ti+1)] — [V1(ti) + Na(t;)] suit la loi P((A1 + A2)(tit1 — ti))-

Donc, d’apres le Théoreme 3.22, (N(¢)):>0 est un processus de Poisson d’intensité A\; + Aa.
([l
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3.2.2 Construction a I’aide de la notion d’instants d’arrivée

Proposition 3.26 Soient a,b deux réels tels que a < b, et considérons la fonction d,, définie

pour tout (x1, -+ ,xy,) appartenant a R"™ par :

n!

dn(21, -+, 2Tn) = Wﬂ(a<w1<m<mn<b)($la ey ). (3.16)

Alors, la fonction d,, est une densité sur R™ par rapport a la mesure de Lebesque sur R'™.

PREUVE DE LA PROPOSITION 3.26 : Cette fonction est mesurable positive. Et nous avons,

grace au théoreme de Tonelli, pour tout (x1, -+ ,x,) appartenant a R" :

n! b b b b
dp(z1, -+, xn)doy ---dmn:'// / / dr,dz, 1 ---dry
R™ ( ) (b - a)n a Jxi Jxo Tp—1
nl b b b b
" b— a2, 1)dz,_1 ---dx;
o | L e
n! /b /b /b /b 1
" “(b—,_5)dx,_ o ---day
(b - a)n a Jzy Jxo Tn—3 2( ) "
LI e
= - b—:l)nfg dl‘nfg dIL‘l
(b - a‘)n a Jx 2 Tpn—4 3! ( )
n!

b
== (ba)"/ (nll)!(b—xl)nldxlzl-

O
Définition 3.27 Soit n un entier naturel non nul.
Et soient X1, ---, X, des variables aléatoires sur un méme espace probabilisé (2, A, P).
Le vecteur aléatoire (X1, ---,Xy) suit la loi de Dirichlet d’ordre n sur un intervalle [a,b],

que 'on note Dy([a,b]), si ce vecteur admet comme densité par rapport & la mesure de Le-
besgue sur R", la fonction d,, définie dans la relation (3.16) de la Proposition 3.26.

. R" — R"
Notons r la fonction rangement : r : , ou les x() sont les
(1’1, e 7xn) = (x(l)v e a$(n))
réels xj rangés dans 'ordre croissant. C’est-a-dire les réels définis par :
{ {-rb T axn} = {x(l)v T ax(n)}
Ta)y ST S S Ty
Nous allons présenter dans la proposition suivante un lien entre les lois uniformes et les lois

de Dirichlet.
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Proposition 3.28 Soient a et b deux réels tels que a < b. Et soient , pour un entier na-

turel non nul n, Uy, ---,U, des variables aléatoires réelles indépendantes identiquement
distribuées suivant toutes la loi uniforme U([a,b]). Considérons Uy, Uy, -+ ,Up) leur ar-
rangement par ordre croissant.

Ainsi nous avons : (Ugyy, -+ ,Uyy) = (U, -+ ,Up).

Alors le vecteur aléatoire (U, -+ ,Uyy) suit la loi Dy([a, b]).

PREUVE DE LA PROPOSITION 3.28 :
Soit Ay, = {(21, -+ ,zn) €ER" |21 w2 < <)
Considérons S,, I'ensemble des permutations de l’ensemble {1, ---  n}.
) R" — R"
A chaque ¢ appartenant & S,,, on considere R, : .
(xlv T ,$n) = (xa(l)v T >xa(n))
Alors nous avons 1’égalité :

R" = | J R, (4n). (3.17)
0€SL
Le vecteur aléatoire (Uy, ---,U,) a comme densité par rapport a la mesure de Lebesgue
n-dimensionnelle A, la fonction f,, qui a (x1, --- ,z,) appartenant a R™ associe :
1
fo(z1, o0 m0) = Wﬂ[a,b]n(ﬂfl, e, ).

Soit maintenant une fonction g mesurable bornée sur R", on a alors, par le théoreme de

transfert :
I [g (U(l)’ U(n))] :/ (gOT‘)(l’l, al'n)fn(xla 7$n)d)\n($la ,l‘n).

Notons z = (x1, -+, xy,), alors 'égalité (3.17) implique :

E[s Uiy V)] =X [ | (gon@f@dr@

Dans chaque intégrale : / 14, (Ro(2)) (gor)(z)fu(z)dA,(x), on effectue alors le change-
Rn

ment de variable : y = R,(z), R, étant une isométrie, le jacobien est £1, alors :

E g (Uay, - Un)] = Z /n]lAn(y)(gor) (R;'(y)) fo (R () dAn(y). (3.18)

O’ESn
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Or les fonctions gor et f, sont invariante par R, !, alors les intégrales présentes dans (3.18)

sont indépendantes de la permutation o choisie. Et donc :

E[g(Uay, - Un)] = n!/ (gor)(y)fuly)dAn(y). (3.19)
De la relation (3.19), et de I'expression de fy, la densité du vecteur aléatoire (U, -+, Ugy)
est, pour x = (1:17 T 7$TL) € Rna égale a:
n!
f(U(l), ~~~,U(n))(§) = mﬂ(ogmgmﬁ--éxnéb)@),
qui est bien la densité d,, de la loi de Dirichlet D, ([a, b]). O

Voici a présent une proposition liant les lois gamma et les lois de Dirichlet.

Proposition 3.29 Soient, pour un entier naturel non nul n, les variables aléatoires ey, --- , ey,

indépendantes identiquement distribuées suivant toute la loi exponentielle E(N), pour un cer-
n

tain X > 0. Et considérons la variable Iy, égale a Z €k-

k=1
Alors :
i) 'y, suit la loi y(n, \).
it) Pour tout t réel strictement positif, la loi du vecteur (I'y, -+ ,Ty) sachant (T'y4q1 =1t)
est Dy ([0,1]).
i11) Pour tout t réel positif ou nul, la loi du vecteur (I'y, --- ,Ty,) sachant (T')y, <t < Tpyq)
est Dy ([0, t]).

Remarque 3.30 Les variables I'; sont appelés instants d’arrivée.

PREUVE DE LA PROPOSITION 3.29 :

i) Soit f: R™ — R une fonction mesurable positive. Nous avons :

]E[f(rl7 7Fn)] :]E[f<61761+627 7el+”'+en)]-
Or les e, pour tout k appartenant a {1, --- ,n} étant indépendantes et identiquement
distribuées de loi £(A), alors nous connaissons la densité ¢ du vecteur (eg,--- ,ey),
qui est, pour tout = (z1, ---,x,) appartenant a R", égale a :

pla) = Nt ot gy (o),
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Alors :

E[f(Ty, -, Tp)]=A" flxy,z1+xo, -+ yx1 4+ +56n)6_>‘(x1+m+x”)d$1 - -dxy,.
RY
(3.20)
On effectue le changement de variable suivant :
b1 = 21,
to = x1 + 22,

th, =21+ 22+ -+ xp.

Nous avons alors : (21, --- ,2,) € R <= 0 <t <ty <--- < t,. La valeur absolue
du jacobien de ce changement est 1. La relation (3.20) devient :

E [f (Flv T 7Fn)] =" f(tla tg, - 7tn)e_)\tn]l(oﬁhg'“gtn)(t17 U 7t’ﬂ)dt1 e dtn
Ry

(3.21)
Ainsi changeant t,, par t, la densité de g, de I';, est, grace au théoréme de Tonelli :

gn(t) :/ ) N'e M o<y <ooctn_r <ty (1, -+ s tno1)dtr - dty
R?—=

t tn—1 tn—2 tz  pta
= \e Mg, (1) / / / . / / dtidty - - dt, g
0 0 0 0 0
t tn—1 tn—2 t3
— )\”e_’\t]lR+ (t) / / / ... / to dtz R dtn—l
0 0 0 0

t tn—1 tn—2 ta t2
— )\”e_’\t]lR+ (t) / / / . / 53 dt3 ceedty—q
0o Jo 0 0
At S a !
== \Ne MR, (¢ ———dt,_1 = \"e” g, (t
R+()/O (n_2)| n—1 (n_1)| R+( )7
qui est bien la densité de la loi y(n, A).
ii) La densité fr, .. r,)r, .=t est, pour tout (t1, --- ,t,) dans R" :
)\n—l—le—/\t
S =t (f1 o s tn) = L AL Loty <<to<ty (B1, -+ 5 Tn)
n!
n!
== (0<ti<--<tn<t)(t1, *+ ,tn),

qui est bien la densité d,, de la loi Dy,(]0,1]).
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iii) Soit A dans Bor(R™). Alors :

P((Ty,--,Tn) € A)n Ty <t <Thyi1)]

Py, -, Tp)eA| (T, <t<Tpy)l = P, <t<T,]

(3.22)
La relation (3.21) nous permet d’expliciter la densité du vecteur (I'y,--- ,Tp41), qui
est, pour tout (t1,--- ,t,11) dans R™"1, égale & :
— n+1 _>\tn+1
f(f‘h.“ ,Fn+1)(t17 M ,tn+1) — )\ e 1(0§t1§"'§tn+1)(t17 e ,tn+1). (323)
Des lors, grace au théoreme de Tonelli :
Pl <t<Thu]= / » A tle _)‘t"“]1(0<t1< <tn<t<tnsr) (1, o tagr)din - dEng
Rn
+oo t1  pto th—1
= )\n-i—l/ _/\t”Jrldt n+1 X/ / / / dt,dt,—1---dity
t t1 tn—2 tn—1
n
= Nle™M x —
n!’
(3.24)
D’autre part, encore grace au théoreme de Tonelli :
P [((Fl, T 7Fn) € A) a (Fn <t< Fn+1)]
:/A/R)‘n+16_/\tn+l1(0<t1<~-<tn<t<tn+1)(tla oy tpgr)dty - dtng
LT, (3.25)
=\t / e n+1dtn+l X / ]l(OStlS”'StnSt)(tlv ... ,tn)dtl codty,
t A
= \'e M x / o<ty <o<to<y(tr, -+ t)dty -+ - diy
A
Ainsi grace aux égalités (3.24) et (3.25), I'égalité (3.22) devient :
]P[(Fb"' ,Fn) €A | (Fn <t< FnJrl)]
\e -t
= W X /A]l(ogtlg---gtngt) (tla T atn)dtl ceedty
n!
=m To<tri<o<to<ty(ts, -+ tp)dty - - dty
A
ce qu’il fallait montrer.
O
Voici un corollaire qui nous sera utile :
T
Corollaire 3.31 Awec les mémes notations que la Proposition 3.29, le vecteur < P
n+1 Fn—i—l

suit la loi Dy([0,1]).
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PREUVE DU COROLLAIRE 3.31 : En reprenant la densité de la relation (3.21), si f désigne

une fonction positive définie sur R™ :

I r, )}
E S,
|:f <Fn+1 1_‘n—i-l

_ 3 ln
:/ /\n+1€ Mnt1 </ f ( 1 . ) ﬂ(ogtlgmgtnﬂ)((tj)lgjgn—i-l)dtl e dtn> dtpiq.
ot n

) Y
tn—l—l tn+1

123
tn+1.
Alors, nous avons : 0 <ty < -+ <tp <tpr1 <= 0<u; < - <uy <1

Effectuons le changement de variable : Vk € {1, --- ., n} 1 u; =

Le jacobien de ce changement de variable est ¢, ;. Donc :

s (o)
Pn—i-l’ ’ Fn—i—l

:/ )\nﬂtzﬂeﬂt”“ < Ju, o un) Lo, <o<un<1) (W) 1<j<n)dus - 'dun> dtpngq.
Rt R

= (/}R )‘n+1tz+16_)\tn+1dtn+l) < ; fur, - aun)]1(ogu1§-~§un<1)((Uj)1<j<n)dU1"'dun>-
* m

Or, nous reconnaissons la loi gamma ~(n + 1, \) dans la premiere intégrale, de sorte que :
/ )\"thﬂe’)‘t"“dtnﬂ =(n+1)!
Rt

Et donc, finalement :

r r
E [f( R . )] = n+D)Ix [ fur, - un) Locuy <o<un<1) (W) 1<5<n)dun - - - dug,.
I_\n—i—l I‘n—&—l R
Nous reconnaissons la densité d,, de la loi D,,([0,1]). O

De cette étude, nous obtenons donc une nouvelle construction d’un processus de Poisson :

Proposition 3.32 Reprenons les mémes notations que la Proposition 3.29.
+0o0o

Et posons, pour toutt > 0: P, = Z L, <p)- Et considérons le processus (Pt)t>0-

n=1
Alors ce processus est un processus de Poisson d’intensité \.
PREUVE DE LA PROPOSITION 3.32 : Tout d’abord, pour tout ¢ > 0, fixé, P; suit la loi de
Poisson de parametre \t.
En effet, pour tout entier naturel k, sachant que la loi du vecteur (I'y, -+ ,T'x11) : est, pour
tout (t1, ---tgy1) dans R égale & : )\k+le_/\tk+1]l(0<tlS,,,<tk+1)((tj)je{l, - k1), €6 grace au

théoréme de Tonelli :
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PP =k) =PI, <t <Tgy1)

— \kHL /Rk+1 e_/\tk+1]10<t1§__<tk“((tj)je{l’ gyt - dtg

t pt t +oo
— )\t / / .. / / e Mer1dty o dty - - - diy
0 Jt t_1 Jt
t t t
0 Jt1 tk—1

tk

— e — ki}‘ti
A¥e L

ce qu’il fallait trouver. Nous allons maintenant calculer les lois fini-dimensionnelles du pro-
cessus (Pt)tz(). Soit un entier naturel n non nul, et soient 51 < --- < s,, des entiers naturels.
Soient 0 <ty < --- < t,, =t des réels positifs.

Considérons : k1 = s1,ko = S9—81, -+ , kn = Sp—Sp_1. Alors, sachant que Ny = 0, IP-presque

slirement, en posant tg = 0.

7j=1 7j=1
n
Notons que : ﬂ<Ptj — P, , = kj) C (P, = sp). Donc :
j=1
n [ n
(P = Py = kj) = (P, = s0) O [ [ (P, = Py, = Kj)
j=1 | j=1
[ n n
= (P, = sn) N ﬂ(ptj —5;)| = (P, = sn) N ﬂ(rsj <tj <Ty 1)
j=1 j=1
D’apres la Proposition 3.29 (iii), la loi du vecteur (I'y, ---,Is,,I's;41, -+ ,[s,) sachant

Pévenement (P, = s,) = (P, = sp) = (I's,, <t < T, 11) est la loi de Dirichlet Ds, ([0, t]).
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Donc, en posant sg =0 :

P (P, - Py, =ky)
j=1

—-

Il
—

= IP[Pt = Sn] X IP(Pt:sn) (F)t] - Pt]‘_1 = k])

J

)\sntsne—)\t n
=7 P(p,—s,) ﬂ(st <t <Ty41)
mn- ]:1
tSnSn! Sn . —At e
= gl € / H]l(:rs,gtj<xs.+1)($sj,$sj+1) lo<oi<<a,, <t(x1, - 26, )doy - - - da,
t ”Sn. Rsn J J

j=1

— \Sn,—At . .
= A /IR L(ty<ay <oy St <oy 415 <oy Sta<iay 11 oo oS, <) () 1525, ) A - - diz,
Sn

n
_ \Sn ,—At
= H /]Rkj ]l(tj—lﬁxsrﬁlé'“%jStj)((wm)srlﬂﬁmﬁ%)dx%‘flﬂ - d,
j=1
_ )\sne—)\th (tj —tj—1)™
— T
i kj!
les calculs présents dans le produit étant encore des intégrales itérées déja rencontrées.
Or : An = \f1 x oo x \fn gt s e = = Ati—t0) ... e~ AMtn—tn-1) et finalement :

s S DY e
P (P, =Py, =k)| = H#e Aty=t-1),
Jj=1 j=1

ce qui démontre que les P;; — Py, ,, pour j compris entre 1 et n sont indépendantes et suivent

respectivement la loi de Poisson P(A(t; —tj—1)). Le Théoreme 3.22 permet ainsi de conclure.
O

Remarque 3.33 P, compte le nombre de I'; qui sont inférieurs ou égaux a t.

3.3 Série de Le Page pour une variable a-stable symétrique

Proposition 3.34 Soit (I'j);>1 la suite des instants d’arrivée d’un processus de Poisson
d’intensité égale a 1. Et soit (R;);>1 une suite de variables aléatoires réelles indépendantes

et identiquement distribuées, et indépendantes de (I'j);>1.

_1
Si E Fj “R; converge P-presque sirement, alors elle converge vers une variable aléatoire
Jj=1
a-stable.
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PREUVE DE LA PROPOSITION 3.34 : Soit X la limite presque sture de cette série.
Alors elle est mesurable et soient :

“+00 —+00

_1 _1
X =Y () RLXT =Y ()R

J=1 J=1

ou (F;)jzl, (R;)jzl, (F;’)jzl, (R;'/)jzl sont des copies indépendantes de (F]’)jzl, (Rj)jZL

Soient A, B > 0 tels que A® + B = 1. Alors :

+ + n
A;f, + B}(// = ZOO(A_O‘F’)_éR/ 4 OO(B—aF//)_éR// a la méme 101 ue _ = I‘iéR'
B J i+ 2 J j que X =Y T, *R;.

o =1 Jj=1

En effet, tout d’abord (A*"T"j) j>1 est la suite des instants d’arrivée d’un processus de Poisson

d’intensité A% car pour tout réel x et pour tout entier j > 1:
P [A_O‘( ;_’_1 _ I";) > .7)] — IP( 9+1 _ F; > Aax) _ e_Aax,

car I'j11 — I'; suit la loi exponentielle £(1), ce qui montre que A=%(T" ; — I'}) suit la loi
exponentielle £(A®).
Et pour tous entiers non nuls k et j tels que k # j : A=(I',,;, —I') L A7, —T7).
De méme, (B_O‘F;-’ )j>1 est la suite des temps d’arrivée d’un processus de Poisson d’intensité
Be.
Nous superposons ces deux processus de Poisson, grace au Lemme 3.25, le résultat sera encore
un processus de Poisson d’intensité : A* + BY = 1.
Si (T')j>1 sont les instants d’arrivée du processus superposé, alors chaque I'; est soit A~T"},
soit BT, pour un certain m > 1 ou un certain n > 1.
Soit :
" {R;n, si:T;=A°T),

T = _

Ry, si:Tj =BTy

Les R; sont indépendants et identiquement distribuées, alors en fait :

(A=°T!)"a R, + (B~°T) "« R/ suit la loi que : (A® + B%) x (Ty) Ry = T ® Ry.
D’oi1 le résultat. U
Remarque 3.35 Cette proposition suggere qu’une variable aléatoire X stable peut étre
représentée comme la somme d’une série de ce type. Il est néanmoins nécessaire d’ajouter des
hypotheses sur a et sur la loi de R; afin d’avoir une série convergente presque siirement. En

fait, nous allons considérer R; = ¢;W;, ol €; = £1 est la variable aléatoire indépendante de

W;. La derniere proposition motive le théoreme suivant.
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Théoreme 3.36 Soient les suites de variables aléatoires réelles sur le méme espace proba-
bilisé (0, F,P) :
— (&4)j>1 une suite de variables aléatoires indépendantes identiquement distribuées toutes
de loi de Rademacher R.
— ([})j>1 ouT'; désigne le j-éme instant d’arrivée d’un processus de Poisson d’intensité
1.
— (Wj)j>1, ot les W; indépendantes identiquement distribuées et possédant un moment
d’ordre c.
On suppose (€5)j>1, (I'j)j>1 et (Wj);j>1 indépendantes les unes des autres.
Alors :

n
_1
> e I mW S X,
- P—ps
7j=1
ot X a comme loi Su(0,0,0), et ot :
1
o= [cg! B(IW|")] =, (3.26)
01U cq est la constante rencontrée dans la Proposition 1.9.

PREUVE DU THEOREME 3.36 : La démonstration de ce théoréme est présente dans le livre
de Taqqu-Samorodnitsky [2], j’ai apporté des éléments supplémentaires pour en éclaircir des
zones d’ombre.
Etape 1 : Soit (Uj);>1 une suite de variables indépendantes identiquement distribuées

suivant la loi uniforme #(]0, 1[), et indépendante des suites (g;);>1 et (W;);>1.

Et considérons pour j > 1:Y; = EjU;in.

Ainsi grace a la multiplication par ¢;, les Y; sont indépendantes identiquement dis-

tribuées symétriques. En effet, pour la symétrie, comme : U; L. W; L ¢;, en passant

par les fonctions caractéristiques, pour tout ¢ réel :

1 1 1
Q/JY] (t) :% |:/0 /Q <eituaWj(w) +e—ituaWj(w)> du d]P(OJ):|
= Py (D)

Et pour tout A > 0:

_1
PV > \) =P (Ul “|Wy| > A) =P (U1 < A~ |W1[*) . (3.27)
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Or, nous avons, grace a l'indépendance de U; et W1, et au théoreme de Tonelli :
P (Ul < )\—04|W1|a) =P (U1 — )\_a|W1|a < 0)
1 +o0
:/0 /0 ]l],oo,o[(u — Afawa)dIPUl (u) & dIP‘W”(w)

_ /0 - ( /O g Aaw%leUl(u)) APy, ()

- (3.28)
:/0 B [T —oo0 (U1 = A W) Py (w)

“+oo
/0 E ]].]_007)\704“)04}((]1)] d]P‘Wﬂ(w)

+oo
/ P (U1 < )\—awa) dIP|W1|(’U)).
0

Ainsi, en combinant (3.27) et (3.28), nous obtenons :

+oo
P(YVi| > A) :/ P(U; < A2 APy, ()
0
A 400
:/ ]P(Ul < )\_al‘a)dIP|Wl‘(m) +/ IP(Ul < )\_axa)d]P‘Wﬂ(l')

0 A

A +o0

A
_ —a/ APy, () + P(Wi| > A).
0

(3.29)
Donc : \
)\QP(‘Yﬂ > /\) = / :L'adIP|W1‘(33) + /\aIP(|W1‘ > /\) (3.30)
0
Par convergence monotone, d’une part :
A
lim *dPy, | (z) = E(|W1 ). (3.31)
A—+4o00 0
Et d’autre part, puisque : A*P(|W;| > X) < / WL, s aydP
Q
lim A*P(|W7| > A) = 0. (3.32)
A——400
(3.31), (3.32) et (3.30) donne alors :
lim AP(|Vi| > A) = B(IWi "), (3.33)
A——+o00
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Donc Y7 vérifie le Corollaire 3.19 avec h(z) = 1, et ¢ = E(|]W1]%) ce qui donne d’apres
le Théoréme limite 3.20 (Y7 étant symétrique) :
1 O c .
— ZY] —+——>X, ou: X ~ 8,(0,0,0), pour : o > 0.
=1

no = n—-+0o0
1
Soit la constante c, > 0 de la relation (3.26) soit : 0 = [c;'E (W2)] = .
Nous avons : lim t%(1 — ¢x () = 0.
t—0t
En effet : ¢x(t) = e~ 11", donc :
+oo k
(=o®[t[*) 1 — ox(t)
L= ox(t) = o~ 3L -

te t—0+
1 —0

La limite (de nombres complexes) obtenue étant réelle, alors :

lim [9% <1_¢X(t)>} = 0% et : lim [jm <1_¢X(t)>] —0.
t—0+ te t—0+ te
Alors :

i ()] - e )

=lim [ ¢t Y1 —cos(tX (w))]dP(w) = lim [ ¢t"%[1 — cos(tz)|dPx(z) (3.34)
t—0t Jo t—0t Jr

+o0o
= 2 lim t7*[1 — cos(tz)]|dPx (x).
t—07t Jo

(La derniere égalité étant déduite de la symétrie de X.)

D’autre part, grace au théoreme de Fubini :

[ smw (1= F (2 Y= |

0
+oo
= / t ¢ sin(v)]l(X>%) (w)dv dPP(w)
QJ0

+o0o
e Sin(v)/g]l(x>$)(w)d]P(w)dv

- (3.35)
:/ / t~*sin(v)dv dP(w)
o Jo
:/[1 — cos(tX (w))]t~*dP(w).
Q
Donc, des derniers calculs (3.34) et (3.35), on déduit :
: toe U\,
ot = 2t£%1+ ; sin(v) (1 - F (;)) tdv. (3.36)
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Or comme lim A*P(|X| > A) = co0® (Propriété 3.14 (ii)) :

A——+o00

Yo>0: lim (%)Q]P (|X| > %) = co0®. (3.37)

t—0+
Et comme P (|X\ > %) =2 (1 - F (%)) (encore la symétrie), alors on déduit de
(3.36) et (3.37) :

m e (1-F (7)) = o <
t1—1>I(I)l+t (1 F(t = Cad X 2

+00 o3 “+00 —1
Dou: o% = (/ sin(v) dv) X cqo0®. Ce qui donne : ¢, = (/ Sm(v)dv) .
0 0

Ve Ve

1 n

Etape 2 : En écrivant — Z Y; d’une autre maniere, nous allons montrer que cette

na .
Jj=1

+o00 1
moyenne a une limite ayant la méme loi que la somme Z g;Il ;° Wj.
Jj=1
D’apres la Proposition 3.29 la loi de (T'y,...,I";) sachant T'),;1 est la loi de Dirichlet

d’ordre n sur [0, 41] : Dp([0,Tpta])-
Iy r

Et d’aprés le Corollaire 3.31, 1a loi de R — ) sachant 'y, 11 est Dy, ([0, 1]),
n+1 1—‘n—&—l

qui ne dépend plus de 'y, 11.
Or, d’apres la Proposition 3.28, D, ([0, 1]) peut étre construite via une suite croissante
de n variables aléatoires indépendantes (U;)1<i<n, et toutes de loi : (][0, 1]).
” _1 ” _1
Nous allons démontrer que les variables aléatoires : Z e;U f “W; et Z er(j)o‘ W;
j=1 j=1
ont la méme loi.

En effet, nous allons montrer I’égalité de leurs fonctions caractéristiques.

Commentaire 3.37 Le livre de Taqqu-Samorodnitsky [2] n’écrit pas le détail de ce
passage pourtant guere trivial, m’ayant laissé un doute, grace au travail effectué sur

les processus de Poisson, voici [’explication.

Soit, pour une permutation o € §,, ’évenement :
Ay = {w eN | Ua(l)(w) < e < Ua(n)(w)}.

Et considérons I’évenement 2* = U A, ol le symbole U désigne une union dis-

o €S
jointe.
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Et rappelons les notations : A, = {(z1, -+ ,2,) ER" |21 < -+ < xp},

R" — R"
et R, : )
(1, s x0) 2 (To)y 7 5 To(n))

Alors, en effectuant le changement (y1, - ,yn) = Ry (z1, -+ ,70)
P(A,) :/ La, (o), s Tom))dor - dzy,

:/[ ] La,(y1, -+ syn)dyr - - dyp = P(Aw).
0,1]™

Or, par un calcul d’intégrale itérée déja rencontrée :

1
P(Auq) = / ]l(0<x1<--~<:rn)($1v c sy rp)day - day, = e
[0,1]™ n:

1
Des lors : P(2*) = Z P(A;) = nl x = =1. Q" est alors un événement P-presque
oES, TL.
sur.

Pour ¢t réel, des lors nous avons :

” _1 " _1
< exp |it Zer(j)“ W = Z E{L1y, Xexp |it Zero(;.“)Wj
j=1 oESN j=1
(3.38)
Or, grace au théoréeme de Fubini, et en notant W le vecteur aléatoire (W7, ---, W,),
et par £ le vecteur aléatoire (e1, --- ,&p), w = R™ (wy, -+ ,wy) le vecteur de R™ et
e=(e1, - ,ep) le vecteur de R™ :

” 1
EdT1a, exp |it Zngg(;)Wj
j=1

n _1
. @ .
Zejuo-<j)w.7

:/< o Lo o Uotm)e V7 dAn(ur, -+, un)dPyy (w)dPe ()

1

1t < zn: eju;f.) wj>
_ / W oy, ) /(Rn)Qe SO ) o () dPe () | ddn(ur, -+ ).

(3.39)
Or, comme les €;W; sont indépendantes entre elles, les €; étant indépendantes iden-
tiquement distribuées, les W; également, alors pour tout (a1, ---, a,) appartenant a
R™:

n L n
> aigiWi £ ajeq iy Wo)-
j=1 j=1
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Ce qui équivaut a 1’égalité des fonctions caractéristiques, c’est-a-dire pour tout réel ¢ :

it(iemwj) Zt<j %(j)ajwa(j))
/( )26 =1 dPw (w)dPg(e) :/ e \=! dPw (w)dPg(e).
]Rn

(R")?

_1 _1
En appliquant cette derniere égalité (3.40) a (a1, -+ ,a,) = <ug(§), ,u0(2)> , la
relation (3.39) devient :

~ 1
E{ 14 exp |it Z 5jUU(;)Wj
j=1

1

it < > eam%(‘*)wom)
_ / La, (o), () /(Rn)ge AT OTD ] b (w)dPe(e) | dhg(ug, -+ ).

1

it<iejuj O‘w]->
:/ Ta, (Ueys = s Ug(n)) /(Rn)2€ 7=1 dPw (w)dPg(e) | dAp(ug, -« up).

” 1
= 14, exp |it ZEjUj *W;
j=1

(3.41)
En injectant I'égalité (3.41) dans I'égalité (3.38) :

n _1 " _1
E< exp |[it Z 5jU(j)°‘ W = ZE T4, Xexp |it Z EjUj *W;
j=1 o€Sn Jj=1

n
1
< exp |t E eiU; *Wj ,
i=1

ce qu’il fallait montrer.

Ainsi on ordonne les U; de facon croissante. Par conséquent :

1 — r 1 _1
LY vE LS v,

s
— —_
[z
D

N
|

N———

Q}»—‘
=

no j=1 n+1
Tt ® 1
L 1)@ -1 c
=) D g W, —— X,
n — J n—-+00
]:



ou X ~ S,(0,0,0) grace a I'étape 1.
_1
Etape 3 : Il nous reste a démontrer que la série Z g;I'; @ Wj converge P-presque strement,
j>1
la limite sera X, la méme limite que celle en loi.
Pour tout n > 1, T';, est une somme de n variables e, indépendantes suivant toutes

la loi exponentielle £(1). Par la loi forte des grands nombres : —- converge PP-presque
n
sturement vers E(e;) = 1.
r r 1
Alors bt — —ntl o nt
n n+1

~ r
Ainsi I’événement 2 = { lim —* = 1} N{y > 0} est P—presque sir. Nous allons

n——+oo n

converge encore P-presque siirement vers 1.

prouver que Z st‘j_éWj converge sur Q.

Rappelons qulilsi Y est une variable aléatoire réelle sur ) alors la variable aléatoire
Y tronquée par un réel A > 0 fixé est la variable aléatoire réelle : YN définie par :
Y = Yigyicn.

On va utiliser le théoreme des trois séries de Kolmogorov, on va démontrer qu’il existe
A > 0 tel que :

_1
i) Z P ( €jrj O‘Wj

j>1

> )\> converge,

1 (A
ii) Z E (aij“Wj) ] converge,
Jj=1
1 (A
iii) Z Var (5ij “Wj) ] converge.
Jj=1

T ~
Tout d’abord, <"> converge sur {2, alors cette suite est bornée P-presque siirement,
N/ n>1

il existe deux variables aléatoires positives C1, Cs telles que :

'y (w)

n

Vw e QVn>1:C(w) < < Ca(w).

Commentaire 3.38 Dans le livre de Tagqu-Samorodnitsky [], on peut lire pour ce
passage C1, Cy constantes, or, C1,Cy sont évidemment aléatoires (non déterministes),
le passage suivant utilisant le lemme de Borel-Cantelli que j’expose, rend compléte
et rigoureuse la démonstration (le lemme de Borel-Cantelli n’était pas mentionné, le

calcul paraissait direct).
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Alors IP— presque sturement, C; > 0 et Cy > 0. Et nous avons :

_1
IP(sJF] j>)\>:IP(Fja|Wj\>)\>
P ([W;[|* > A°T5)
< P(IW5|* > A%jiCh)
P [{[W;|* > A*jC1} N {C1 > 0}].

Considérons n € Q" et I'événement {C; > n}, alors :
P[{[W;|* > X*Cj} 0 {Cr > n}] = P[W5[* > A%nj].

Or, comme E(|W;|%) < 400, alors pour tout A strictement positif, la série

Z P [|[W;|* > A%nj] converge.
j>1
En effet, en comparant la série a une intégrale et a ’aide du théoréme de Tonelli :

+00 T rteco 400
> PW;]* > Anj] = Z/ APy (y / / APy, (y)da
j=1 =1 /i) A(g)

:/+°O/ o d:v APy (y) = /O YA Py, (y)

)\O‘n
Ainsi, la série : Z P [{|W;|* > AX*C15} N {C1 > n}] converge.
Jj=1
Ce qui, par le lemme de Borel-Cantelli équivaut a :

P

<limsup{|Wj|°‘ > AaClj}) n{Cy > 77}] =0.

Jj—+oo

Faisant tendre 7 vers 0, par convergence monotone (décroissante), nous obtenons :

P

<limsup{|Wj|O‘ > )\O‘C1j}> n{C: > 0}] =0="P

Jj—+oo

tim sup {17512 > Aaclj}] ,
j—+oo
car P(C1 > 0) = 1.

Alors, encore par le lemme de Borel-Cantelli, la série : Z P [|[W;|* > A*C4j] converge,
Jj=21
d’ou (i). Pour la série de (ii), elle vaut zéro, car chaque espérance est nulle.
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Enfin pour la série (iii), grace aux théoréemes de transfert et de Tonelli :

“+oo
Y E
j=1

_1 2
T oW1
(6] i {r;éwnsx}) ]

IN

J=1

+o0 9
Z E (F;QW 1

j2 -2 >
{F]' « WA}

j—1
et zaw? do dP py, | (w).

(-1

e | 2 aw?de dP (w)
. @ Ww- .
" ~ G —1)! (Wil

zaw? do dP yy, | (w).

Aoy

E(|W1|*) < +oo.
—

Corollaire 3.39 Sous ces hypothéses et notations du théoréme , si l'on suppose de plus les
1

W; symétriques, alors Z F;EWj converge P-ps vers une variable aléatoire X dont la loi

i>1
est Sq(0,0,0).

PREUVE DU COROLLAIRE 3.39 : En effet, si les W; sont symétriques, alors les variables

aléatoires ¢;W; et W; ont la méme loi. En effet, observons les fonctions caractéristiques,

sachant que : €; 1L W}, alors pour tout réel ¢, nous avons :

E [eié‘jo‘t} :;/

R

i

1
=— X2
2><

eiwtdIPWj (w) + /

A 1 A
ezwtdIPWj (w) + 2/ e~ wtq

R

R

Py, (w)

eiwtdIP,Wj (w)]

/ eiwtdIPWj (w) — / eiwtdIPWj (’LU) - (eint) ]
R R

Des lors, parcourant la démonstration du Théoreme 3.36, tous les calculs des étapes 1 et 2

restent valides en remplacant les € ;W par les variables symétriques W, car ces calculs ne font

intervenir que les lois de ¢;W; ou bien de |W;|, et par le fait que (I'j)j>1 est indépendante de
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(Wj)j>1. Et, de méme, I'étape 3 assurant la convergence P-presque siire ne fait qu’intervenir
la loi des [Wj|. O

Corollaire 3.40 Soit 0 < a < 2, alors toute variable aléatoire X du type S(o,0,0) (SaS de

parameétre o > 0) posséde comme série de Le Page :

X=c0 < (|W1 > Z 5]I’ Wj; P-ps,

ou (Wj)j>1 est une suite de variables i.i.d telles que E (|[W1|*) < 400, ou bien :
c a = L
X=0|—=ro—r L. cWw;, P-
o <E(|w1|a>) IRLRST

si l’on suppose en plus les W symétriques.

4 Processus symétriques a-stables

4.1 Vecteur aléatoire stable, variable SaS complexe

Définition 4.1 Un vecteur aléatoire X = (X1, -+, Xy4) dans RY est dit stable si pour tous
réels strictement positifs a,b et toutes copies XU, X@ jndépendantes de X, il existe deux

réels ¢ et d tels que :
X 4 px@ £ X 4. (4.1)

On dit que X est strictement stable si pour tous réels a, b strictement positifs, et toutes copies
XU X indépendantes de X, il existe un réel c tel que : aXV) + X @ £ .x.

Enfin, on dit que le vecteur aléatoire X est symétrique stable, s’il est stable et si de plus il

est symétrique, c’est-a-dire :
VA € Bor(RY) : P(X € A) =P(—X € A).
Remarque 4.2 Les définitions ci-dessus donnent des conditions sur la loi jointe. Qu’est ce

que cela implique pour les composantes X, ---,Xy? Chaque composante est-elle stable ?

Qu’en est-il des combinaisons linéaires ? Le théoreme suivant répond a ces questions.

Théoréeme 4.3 Soit X = (Xi, -+, Xg) un vecteur aléatoire stable (respectivement stricte-

ment stable, respectivement symétrique stable) dans R<.

47



— Alors il existe une unique constante o appartenant a |0,2] telle que la relation (4.1)
1
de la Définition 4.1 a lieu pour ¢ = (a® + b%)a .
— De plus, toute combinaison linéaire des composantes de X est une variable aléatoire

a-stable (respectivement strictement stable, respectivement symétrique stable).
Comme la dimension 1, nous avons :

Corollaire 4.4 Un vecteur aléatoire X est stable dans RY si et seulement s’il existe un

unique o appartenant a |0,2] telle que pour tout entier n > 2, il existe un vecteur d,, € R4

tel que pour toutes copies indépendantes X, .. X™) .
n ' L
S XU EnaX + dy. (4.2)
j=1

Les derniers théoréme et corollaire motivent alors la définition suivante :

Définition 4.5 Un vecteur aléatoire X = (X1, ---,Xy) dans R? est dite a-stable pour un
certain o« appartenant a 10,2] si la relation (4.1) de la Définition 4.1 a lieu pour le réel
c=(a*+ bo‘)é ou si (de maniére équivalente) la relation (4.2) du Corollaire 4.4 a liew.

Le réel o est encore appelé (comme pour les lois stables) indice de stabilité du vecteur X.

Remarque 4.6 La seconde partie du Théoreme 4.3 nous dit que si X est un vecteur aléatoire
stable alors toutes les combinaisons linéaires de ses composantes sont stables. La réciproque
est-elle vraie 7 Malheureusement, si a < 2, la réponse est négative en général. Néanmoins la
réponse est oui si toutes les combinaisons linéaires des composantes de X sont strictement
stables (respectivement symétriques stables), ou encore si & > 1. (Un contre-exemple existe
et a été trouvé par David J. Marcus dans le cas ou 0 < a < 1, et est exposé dans le livre de

Taqqu-Samorodnitsky [2].)

Théoréme 4.7 Soit X un vecteur aléatoire dans RY.
i) Si toutes les combinaisons linéaires sont strictement stables, alors X est strictement
stable.
i1) Si toutes les combinaisons linéaires des composantes de X sont symétriques stables,
alors X est symétrique stable.
i11) Si toutes les combinaisons linéaires des composantes de X sont a-stables pour un

certain o > 1, alors X est a-stable.
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Notation 4.8 Notons < - ,- > le produit scalaire dans R%. ||-|| désigne la norme euclidienne
dans R, Et Sy désigne la sphére unité euclidienne dans R

Et notons, pour tout vecteur aléatoire a-stable X = (Xy, - -+, Xq) sa fonction caractéristique :
ba, telle que pour tout © = (A, --- ,0,) dans RY :

d
$a(©) = E[exp (i (0, X)) = ES exp |i | > _0;X;
j=1

Théoréme 4.9 Soit o un réel appartenant a )0, 2], alors le vecteur aléatoire X = (Xq, -+, Xq)
dans R est a-stable si et seulement s’il existe une mesure finie I' sur (S4,Bor(Sq)) et un
vecteur o € R? tels que, pour tout © = (01, --- ,0;) € R%:

i) Sia#1:

. yes .
a(O) = exp {— : | (O, s) | x [1 — i sgn ((O,s)) tan (7)} dl'(s) +1 (@,/m)} :
d
i) Sia=1:
2. .
6a(©) =oxp { = [ 100.5) 1% [1+ 2 sun (0.5 1o (.50 | AT(s) 4 (6, |
d

De plus, le couple (I', o) est unique lorsque 0 < av < 2.

Définition 4.10 Soit X = (X1, ---,Xg) un vecteur aléatoire a-stable dans R?, pour un
certain 0 < a < 2, alors :

— Le couple (T, up) associé a X dans le théoréme 4.3 est appelé représentation spectrale

du vecteur stable X.

— La mesure T' est appelée la mesure spectrale du vecteur stable X.

Remarque 4.11 Rappelons qu’une mesure m sur (34, Bor($4)) est symétrique si pour tout
A appartenant a Bor($4), m(A) = m(—A).

Dés lors, dans les cas stricte et symétrique, nous obtenons les résultats suivants :

Théoréme 4.12 Soit o un réel appartenant a )0, 2], alors le vecteur aléatoire X = (X1, -+, Xq)
dans R? est strictement a-stable si et seulement si la représentation spectrale (T', juo) de X
vérifie :

i) Dans le cas ot av # 1 : pg = Opa.

ii) Dans le cas ov a =1:Vk e {1, --- ,d}: [ sdI'(s) = 0.
Sa
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Théoréme 4.13 Soit o un réel appartenant a 0, 2].

Alors le vecteur aléatoire X = (X1, ---,Xy) dans R? est symétrique a-stable (que l’on note
encore SaS) si et seulement s’il existe une unique mesure I finie sur (34, Bor($y)) telle que,
pour tout © dans R? :

9a(©) = Efexp (i {0, X))] = exp [— \<@,s>\adr<s>] | (4.3)

Sq

Remarque 4.14

— Les démonstrations des théoremes 4.3, 4.7, 4.9, 4.12 et 4.13, et du corollaire 4.4 se
trouvent dans le livre de Taqqu-Samorodnitsky [2].
Passons a présent aux variables complexes stables, et présentant leurs propriétés. Nous
allons plus tard présenter dans ce mémoire une classe importante de processus réels
stables (processus harmonisables) qui peuvent étre définis en termes de variables com-
plexes SaS.
Soient X1, X9 deux variables aléatoires réelles définis sur le méme espace probabilisé.
C’est la loi du vecteur (Xj,X2) qui va caractériser la variable aléatoire complexe
X =X +iXs.

Définition 4.15 Soit o un réel appartenant a |0, 2].
i) Une variable aléatoire complexe X = X + iXy est dite symétrique a-stable (encore
notée SaS) si le vecteur aléatoire bi-dimensionnel (X1, Xs) est SasS.

1) Une variable aléatoire complexe SaS X = X1 + iXo est dite invariante par rotation

(ou isotrope) si :
Y B e0,2n]: X £ X. (4.4)

Théoréme 4.16 Soit o un réel appartenant a |0,2[. Alors une variable complexe SaS X
est isotrope si et seulement s’il existe o > 0 telle que sa fonction caractéristique ¢px est de la

forme, pour tout z compleze :

‘ «

ox(z) =E[i Re(zX)] = e~ o2

Voici le théoreme relatif a la représentation en série de Le Page pour une variable complexe

SasS isotrope.

Théoréme 4.17 Soit V' une variable aléatoire complexe invariante par rotation.
Supposons que IE [|Re(V)|Y] < 4+o00. Et soit (V});>1 une suite de variables aléatoires indépendantes

identiquement distribuées et suivant toutes la loi de V.
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Supposons également que la suite des instants d’arrivée (I';)j>1 d’un processus de Poisson
d’intensité égale a 1, et la suite (V});j>1 sont indépendantes.
Alors la suite (Yy,)n>1 de variables aléatoires complezes définie pour n entier naturel non nul

par :
o1
Yo=ca Y T,V (4.5)
j=1

converge P-presque surement vers une variable aléatoire complexe Y qui est SaS(o) ou :
_1 1
o =cq “E[|Re(V)|*]=.

PREUVE DU THEOREME 4.17 : Tout d’abord, par invariance par rotation, eV = —V
possede la méme loi que V. Donc V' est symétrique. Donc Re(V) et Jm(V) le sont aussi :
L
r —Re(V) = Re(V)

VEV= -Re(V) —i Im(V) £ Re(V) +i Tm(V) = .

“Im(V) £ Im(v)

Ensuite encore par invariance par rotation, &3V possede la méme loi que V' de sorte que :
. e
E[[Jm(V)°] = E Hme (615‘/)‘ | = Blime(v)e).

Donc, comme E [|Re(V)|?] < +o0 et E[|Tm(V)|%] < 400 d’apres le Corollaire 3.39 (le cas

réel), les deux suites de variables aléatoires réelles :
o1 _1
Re(Vy) =D T, *Re(Vj), et : Jm(Yy) = > T *Im(Vj),
j=1

convergent IP—presque strement vers respectivement deux variables aléatoires réelles Sa.S,
que nous nommons : Y1 et Y@,
Il existe alors deux événements 1, Qg, tels que P(21) = P(Q2) = 1, et tels que :
Vw € Q: [Re(Yn)](wr) —— YV (wr)
n—-+4o0o

Y ws € Dyt (V)] (wa) — Y@ (wy)

n—-+o0o

Soit Y la variable aléatoire complexe égale & YU + iY@ Alors Q3 = Q1 N Qy, est un

évenement P-presque sur, et alors pour tout w dans g3 :

Yo (w) = Re(Yy) (W) + i Im(Yy)(w) —— YO (W) +i YO (W) = Y (w),

n—-+00

ce qui prouve que la suite Y,, converge P-presque siirement vers Y.

Il nous reste & montrer que Y est complexe symétrique a-stable.
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Comme V est invariante par rotation, pour tout complexe non nul z, 6, désignant un argument
de Z :
Re(zV) = Re <|z|esz) — |2| Re (ewzv) £ 12 Re(V), (4.6)

I’égalité en loi entre les premier et dernier membres étant encore vraie si z = 0.
1
Alors, appliquant le Corollaire 3.39 (le cas réel), a la série Z I, “MRe(2V}), et utilisant la

Jj=1
derniere égalité (4.6) :
too
E[exp (i Re(zY))] = E < exp Z I, “Re(zV))
j=1

= exp {—c; B [|Re(zV)|*]}
= exp {—cg ' [2|*E[|9%e(V)|*]} = exp [-0?[2]],

ce qu’il fallait démontrer. O

4.2 Processus stables

Dans cette section, T' désigne un ensemble non vide arbitraire. Il peut étre un espace de

fonctions ou de boréliens (ce qui sera en effet le cas).

Définition 4.18 Un processus stochastique (Xy)ier est dit stable si toutes ses lois fini-
dimensionnelles sont stables.

1l est strictement stable si toutes ses lois fini-dimensionnelles sont strictement stables.

Enfin, il est symétrique stable si toutes les lois fini-dimensionnelles sont symétriques stables.

Remarque 4.19 Les Théoremes 4.3 et 4.7 impliquent que toutes les lois fini-dimensionnelles
d’un processus stable doivent le méme indice de stabilité «, Ainsi, on peut définir 'indice de

stabilité d’un processus stable, et démontrer le théoreme suivant :

Théoréme 4.20 Soit (Xi)ier un processus stochastique. Alors :
a) (X¢)ter est strictement stable si et seulement si toutes les combinaisons linéaires
d
Z bp Xy, , pour tous t1, --- ,tq dans T, et tous by, --- by réels, (4.7)
k=1
sont strictement stables.
b) (Xi)ier est symétrique stable si et seulement si toutes les combinaisons linéaires de

la forme (4.7) sont symétriques stables.
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c) Sia>1, (Xi)er est a-stable si et seulement si toutes les combinaisons linéaires de
la forme (4.7) sont a-stables.

Example 4.21 Un exemple de processus stable : Fixons 0 < o« < 2, et —1 < g < 1.
Le Théoreme 1.4 de consistance de Kolmogorov justifie 'existence du processus (Z4(t))i>0
appelé processus de Lévy a-stable (standard) et qui vérifie :

i) Z4(0) = 0, P-presque sirement.

ii) (Za(t))t>0 est a accroissements indépendants.

iii) Pour tous s,t > 0, tels que s < t: Zy(t) — Za(s) suit la loi So((t — s)%, 3,0).
Ce processus est alors a accroissements stationnaires. Lorsque o = 2, nous retrouvons le
mouvement brownien. Les processus de Lévy a-stables sont symétriques lorsque g = 0. Et il

1
sont ——similaires (sauf quand oo = 1,8 # 0.).
e

4.3 Intégrale symétrique stable

Dans cette section, nous suivons toujours le livre de Taqqu-Samorodnitsky [2], en adaptant
les résultats et démonstrations au cas symétrique uniquement.

Soit 0 < a < 2, et soit (F,&,m) un espace mesuré, et considérons ’espace fonctionnel
LY(E,&,m), que on notera L*(E).

"L’intégrale stable” d’une fonction déterministe f sera notée I(f). Nous allons définir une fa-
mille (I(f))fecre(r) comme un processus stochastique indexé sur I'espace de fonctions L(E).
L’intégrale, que nous allons construire, aura une propriété de linéarité IP-presque stre.

Nous allons expliciter les lois fini-dimensionnelles et montrer que la famille de ces lois fini-
dimensionnelles est consistante, le Théoreme 1.4 de consistance de Kolmogorov (attention
I'espace des états est R, non pas F) assurera alors que le processus (I(f))fera(r) est bien
défini.

Théoréme 4.22 FEtant données fi, --- , fq appartenant a L*(E), nous définissons la loi de
probabilité Py, .. r,) sur R?, par sa fonction caractéristique, en posant F = (f1, -+, fa),
d «
WO = (0, - 04) €RE: r(O) = exp —/ S 0;5@)| dm@)|. (4s)
E |4
j=1

Alors, il existe un processus (I(f))ere(p) dont les lois fini-dimensionnelles sont les lois de
probabilité Py, .. ;) de fonction caractéristique ¢y, ... 1)
De plus, pour tout f appartenant a L*(FE) :

Q=

I(f) suit la loi SaS(o), ot : 0 = (/E ]f\adm>
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PREUVE DU THEOREME 4.22 : Montrons en effet que ¢y, ... 7,) est la fonction caractéristique
d’une loi stable sur R?. I va falloir pour cela effectuer un changement de variable transformant
cette intégrale sur E en une autre sur $,.
Notons que m n’est pas nécessairement la mesure spectrale d’une loi a-stable, car E n’est pas
a priori égal a $4. Cependant, 'avantage de la relation (4.8) est que la mesure m est utilisée
quels que soient d et les fonctions fi, --- , fqg dans LY(E).
Posons F' = (f1,---, f1), et pour tout © = (61,--- ,60;) appartenant & R :

o

d d
w(®,F(z)) =) 0;fi(x)| ,et: By ={zecE|Y fiz)>0,. (4.9)
j=1

j=1
Alors, E appartient a £, Et alors si « appartient a E'\ F;, par I'inégalité de Cauchy-Schwarz :

1
2

d
> fi@)] =o.
j=1

1
2

d d
S 0@ <> 65
i=1 j=1

Ainsi :
60(0) = exp |~ [ u(®, F@)am(a)| =exp |- [ u(e. Fe)am(o)
+
" _1 g a
d 2 d 2
= exp —/ u |0, | > fi) x F(z)| x | Y _fi(x) ]| dm(z)
BT j=1 j=1
= exp {—/ u(@,G(m))] dmi(z),
Ey
ou G = (g1, -+ ,94), telle que pour tout 1 < j < d, et pour tout x appartenant & E, :
gi(z) = A, et pour tout z appartenant a £\ E; : gj(z) = 0, et ot my est la

(ST

d
(S o)
k=1
d 3
mesure sur (F, ) définie par : my = Z i -m
j=1

mq est une mesure finie car chaque fj appartient a L*(E).

d
De plus, pour tout x appartenant a E : Z gjz(x) =1.
j=1
Nous effectuons alors le changement de variable :

s=(s1, -+ ,8q4) = (91(x), -+, 94(x)) = G(z).

o4



Alors : x € By < (s1, -+ ,54) € $4. Et nous avons, pour tout © appartenant a RY :
o

d
or(©) = exp —/ ZHjsj dr'(s) |,

Sa |51

ou I' est la mesure finie sur ($4, Bor($,)) telle que, pour tout A dans Bor($,) :

T(A) = /E g1y (@)dma(@), on: GH(A) = {w € By | G(z) € A}, (4.10)

Le Théoreme 4.9 nous dit alors que cette fonction ¢ est bien la fonction caractéristique
d’une loi symétrique a-stable sur R
Enfin, pour la consistance de la famille des lois Py, .. 1,
— Pour toute permutation o dans S, : pour tout © = (6,--- ,6;) dans R? :
- @

d
DForyr o friay) o) 1 0o(a)) = exp | — /S O0(j)50()| dL(s)
d |j=1

J

r (0%

d
= exXp —/S Z 9j5j dF(S) :¢(f1,..,,fd)(01,-‘~ ,Gd).
d|j=1

— Si1<d <d, pour tout fi, ---, fq dans L*(FE), pour tout (61, ---,604) dans R?, en
posant Oy 1 =0, -+ ,0;=0:
o i

d
¢(f17... ,fd/)(ela e 79d/) = €exp /E Z@j}(x} dm(x)
j=1

o -

d
[ |30:5@) am)
0B et

= @1, 5001, -+ 04,0, ---0).

= exp

Enfin, si f appartient & L*(E), alors I(f) a pour fonction caractéristique, pour tout 6 réel :

67(6) = exp [— / |e\a|fradm} — exp [—w\a /| |fradm} ,

qui est bien la fonction caractéristique de la loi d’une variable aléatoire réelle SaS de pa-
1

rametre o = </ |f|adm> ° O
E
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Définition 4.23 Pour tout f appartenant o L*(E,E,m), on appelle intégrale a-stable la

variable aléatoire I(f).

Propriétés 4.24 Le processus (I(f))fcre(p) admet une propriété de linéarité P-presque

stre, c’est-a-dire :
A fl, f2 S La(E),V ar,a2 € R: I(a1f1 + agfg) = all(fl) + CLQI(fQ), P-ps.

PREUVE DE LA PROPRIETE 4.24 : Pour tout 6 réel :

IE {i9 [I (a1f1 + (12f2) - alj(fl) - a2[(f2)]}
= E{i[0I (a1 f1 + az2f2) — (a10)I(f1) — (a20)I(f2)]}
= ¢(a1f1+a2f2,f1,f2)(9’ —a10, —az0)

= exp {—/ |0a fi(x) + Oaz fo(x) — Oar fi(z) — bas fo(x)|* dm(z)| = 1.
E
Ainsi, la variable I(ay f1 + aaf2) —a1I(f1) — a2l(f2) est nulle, et alors P-presque sirement :

I(a1f1 + a2 fa) = arl(f1) + a2l (f2).

4.4 Mesure aléatoire symétrique stable

Encore une fois dans cette section, nous suivons toujours le livre de Tagqu-Samorodnitsky
[2], en adaptant les résultats et démonstrations au cas symétrique uniquement.
Considérons toujours un espace mesuré (E,E,m). Notons : § = {4 € £ | m(A) < +oo}.

Et notons L°(Q) I'espace des variables aléatoire réelles sur Q.

Définition 4.25 Soit M : & — L(Q).

— On dit que M est indépendamment dispersée si pour tout entier naturel k non nul, et

pour tous Ay, --- , Ay appartenant a &y et deux a deux disjoints, les variables aléatoires
M(Ay), --- M(Ag) sont indépendantes.

— On dit M est o-additive si pour toute suite (A;);>1 d’éléments deux a deux disjoints
+oo

de & tels que UAj appartient encore a &y, on a :
j=1

+o0 400
M4, | =D M4y, Pps.
j=1 j=1
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— Soit 0 < a < 2. M est une mesure aléatoire symétrique a-stable (encore notée Sa.S)

st M est indépendamment dispersée, o-additive et telle que :

RI=

VAe& : M(A) suit la loi S,S(0), ot : 0 = (m(A)) (4.11)

Proposition 4.26 Considérons le processus SaS (I(f))fere(r) du Théoréme 4.22, alors :

50 — LO<Q)
: est une mesure aléatoire SaS.
Avr— I(14)

PREUVE DE LA PROPOSITION 4.26 :
— Pour tout A dans &, la norme L*(F) de la fonction 1 4 est bien sir (m(A))é Et le
Théoreme 4.22 assure que M (A) = I(14) suit la loi SaS(0), ou 0 = (m(A))é
— Montrons l'indépendance dispersée. Soient k dans IN*, et Ay, ---, A dans &y, deux a
deux disjoints.
Calculons la fonction caractéristique du vecteur aléatoire (I(14,), ---,I(14,)) égal
au vecteur (M (A1), ---, M(Ag)). Pour tout (61, ---,60) appartenant & R*, et pour

tout x appartenant a F, les A; étant deux a deux disjoints :

«a ‘91|a, Si.’L‘EAl

k
0 (@)| =4
j=1

|0k |, siz € Ay

k
= > 16;" L4 ().
j=1
Ainsi :
k i k “ ]
E | ZGJ-M(A]-) = exp —/ ZQj]lAj ()| dm(x)
j=1 | E =t |
- ; .
~exp |- / 1651 1, () dm(z)
L P= |
k k
Lo |~ [ 11, )am(o)| = [explits1(a,)],
=1 E j=1
ce qui montre I'indépendance des variables aléatoires M (A1), -+, M(Ag).
— L’additivité pour des familles finies d’éléments de &y deux-a-deux disjoints Ay, --- , Ag

est assurée par la linéarité (IP-presque sire) de lintégrale symétrique stable, le fait

k
que:]l<k >:Z]1Aj.

U 4, j=1
j=1
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Soit & présent une suite (A;);>1 d’éléments deux a deux disjoints de & tels que
+oo

A= UA]- appartient encore a &.
j=1

Nous devons montrer que :

+oo n
M(A) =) M(4)) | = Jm > M(A)) |, P-ps.
j=1 j=1

Les variables aléatoires M (A;) étant indépendantes, le Théoreme 1.1 de Paul Lévy que

la convergence PP-presque stire de la série g M (A;) est équivalente & sa convergence
Jj=1
en probabilité. Nous allons prouver sa convergence en probabilité.

Grace a additivité pour les familles finies d’éléments de & deux & deux disjoints,

d’une part :

> MA) =M (4], Pps. (4.12)

j=1 j=1

oo oo
D’autre part : U Aj € &, car : U Aj C A, donc :
j=n+1 Jj=n+1
n +oo
MA) =M [ JAa; | +Mm | | 4|, P-ps. (4.13)

Jj=1 Jj=n+1
Par conséquent, combinant les égalités (4.12) et (4.13), nous avons P-presque strement :
n n oo
M(A) =DM (A = M(A) =M | U4 | =M | U 4
j=1 j=1 j=n+1

Or, m est o-additive et alors :

+00 +00 +00
M U A; | suit laloi SaS(oy), ou : oy =m U Al = Z m(A;).
j=n+1 j=n+1 j=n+1

Comme oy, —+—> 0, alors, d’apres l'inégalité de Markov dans l'espace L*(2), pour
n—-+0oo

tout € > 0:
—+00
¢ oo
Pl (M| | A|l>e] <2 ——0,
) e® n—+4oo
j=n+1
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+oo P
donc:M( U A]) — 0.

j=n+1 n—+o00

Et alors, I’égalité P-presque stire (4.4) nous donne :

n—-+00

M(A) - M || J4; | ——0,
j=1

ce qui prouve la o-additivité de M.

4.5 Définition constructive de l’intégrale symétrique stable

L’intégrale a-stable a été définie dans la section 4.3 comme un processus stochastique indexé
sur la famille d’intégrandes f.

Dans cette section, nous allons montrer que I(f) peut aussi étre construite comme une au-
thentique intégrale qui sera notée / f(x)dM (z), o M est une mesure aléatoire symétrique
E

stable. La méthode classique, nous allons approximer f par une suite de fonctions (f,)>1

simples (ne prenant qu’un nombre fini de valeurs), et dont la définition de leur intégrale
fn(z)dM (x) est facile. Et nous prendrons la limite en probabilité (comme l'intégrale de
E

Wiener). Nous montrons finalement que l'intégrale définie dans la section 4.3 et celle que
nous aurons définie correspondent.

Considérons toujours un espace mesuré (E,E,m). Notons : & = {A € £ | m(A) < +oo}.

Et notons L%(Q) I'espace des variables aléatoire réelles sur Q.

Soient enfin un réel a appartenant a |0, 2], I’espace de Lebesgue L*(E, £, m) et une mesure

aléatoire symétrique M «-stable définie sur &.
d

Soit la fonction usuelle f de la forme f(z) = ch]l A;»> ol les Aj pour 1 < j < d appartiennent
j=1
a & et sont deux a deux disjoints.

Nous définissons :

d
7(7) = [ S@)d (@) = 3e,M(4), (4.14)
j=1

Comme M est indépendamment dispersée et o-additive, les variables aléatoires symétriques
stables M (A;) sont indépendantes.

Utilisant la Propriété 3.13 (i) et (iii) a d variables stables indépendantes et dans le cas
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symétrique, nous obtenons :

1
d o 1
Z(f) suit la loi Su(0¢,0,0), 0u: 0f = Zc?m(Aj) = (/ ]f|adm) :
i=1 E
L’intégrale Z(f) est clairement linéaire pour les fonctions simples.
Considérons maintenant f appartenant a L*(E). Alors nous savons qu'il existe une suite de

fonctions simples (fy,)n>1 telle que :

fn = f
n—00 (4.15)

dge LYE) |Vn>1,Ve e E:|fo(z)| < g(z).

Une telle suite de fonctions simples existe :

n?—1 . .
— J . _J L
Pl = 2 (@ (2) 1o @)
(cette suite est majorée par g = |f].)
La suite (Z(fyn))n>1 est alors bien définie, et nous allons montrer qu’elle converge en proba-
bilité. Nous allons montrer qu’elle est de Cauchy en probabilité.

Soient n, k des entiers naturels non nuls. Alors, par linéarité de Z pour les fonctions simples :

Z(fn) —Z(fx) = Z(fn — fi), qui suit la loi Sq(opk,0,0), ot : oy = (/E | fr — fk|°‘dm) :

La suite (Z(f,))n>1 est alors de Cauchy en probabilité et donc converge en probabilité, si 'on
parvient a prouver que o, tend vers 0 quand n et £ tendent vers +o0.
Nous avons, pour tout x appartenant a E : |f,(x) — fr(z)| < 2¢(z), et donc la convergence

dominée donne : g, , —— 0.
" n,k—+o0

Soit une autre suite (g ),>1 vérifiant la relation (4.15), convergente donc m-pp vers f. Nous
allons prouver que la limite en probabilité de la suite (Z(fp))n>1-
gi,si:n=2k—1

Alors (Z(hy,))n>1 converge en probabilité vers une variable aléatoire H, les suites (Z(fx))k>1,
et (Z(gx))k>1 convergent en probabilité respectivement vers disons F et G, alors ces deux
dernieres suites étant des sous-suites de la suite (Z(hy,))n>1, par unicité des limites en proba-
bilité, nous avons : F = H =G.

Nous définissons alors Z(f) comme étant la limite en probabilité de la suite des variables -

stables symétriques Z( f,,)n>1 ot (fn)n>1 est une suite de fonction simples vérifiant la relation
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(4.15) (cette limite en probabilité, ainsi, ne dépend pas de la suite (fy,),>1 choisie vérifiant
la relation (4.15)).

La convergence en loi implique la convergence en loi. De plus, pour tout 6 réel :

B foxp (021, )] = exp | <11 x ([ 1507am) | s exp |10 ([ 17ieam) |

qui est la fonction caractéristique de la loi S, (o, 0,0), ou oy = </ |f|adm>
E

Ainsi : Z(f) suit la loi Sq(0y,0,0), ot of = (/ ]f\adm> " Done Z(f) et I(f) définie dans
la section 4.3 sont égales. "

Nous retrouvons la linéarité de I'intégrale, en effet, soient f, g appartenant a L*(FE), et soient
(fr)n>1, (gn)n>1 deux suites convergentes m-presque partout respectivement vers f et g et
vérifiant la condition (4.15) (notons 6, et 63 les fonctions dominant respectivement (fp)n>1
et (gn)n>1)-

Soient a,b deux réels, et soit h = af + bg, h, = af, + bg,. Alors, h, converge simplement

vers h, et pour tout x appartenant a F, et pour tout n > 1:
()| < al| fu(2)] + [bllgn(2)| < |alf1(z) + [b]62(z).
Alors, les limites écrites ci-dessous sont en probabilité :

I(h) = lim Z(hy)

n——+o0o

= lim aZ(f,) + bZ(gn)

n—-+4o0o

= angr_’{looz(fn) + bngrfooz(gn)

aZ(f)+bZ(g).

La linéarité de l'intégrale ainsi construite et le fait que pour tout f appartenant a L%(FE),

Z(f) suit la loi SaS(o¢), ot o5 = </ |f]°‘dm> a, nous permet de retrouver :
E

Proposition 4.27 Pour tous fi, ---, fq appartenant a L*(E),
i) La fonction caractéristique du vecteur aléatoire dans R® : (Z(f1), ---,Z(f1)) est
donnée par la relation (4.8)
ii) Le vecteur aléatoire dans Re : (Z(f1), ---,Z(fq)) est un vecteur SaS ayant pour

mesure spectrale I' donnée par la relation (4.10).

Enfin, la proposition suivante relie la convergence d’une suite d’intégrales symétriques a-

stables a la convergence de la suite des intégrandes :
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Proposition 4.28 Soit, pour tout entierj >1: X; = / fi(x)dM (x), et soit X = / f(z)dM(x),
E E
ot M est une mesure aléatoire SaS dans l'espace (E,E,m). Alors :

X; — 5 X < lim /|fj—fadm:(). (4.16)

j—+o0 j—=+oo J B

PREUVE DE LA PROPOSITION 4.28 :

Nous avons : X—>X<:>X X—>O
Jj—+oo Jj—+oo

Or, par linéarité de I'intégrale stable : X;— X suit la loi SaS(o;) ot o = </ |fj — ]“dm)

Donc la convergence en probabilité de (X);>1 vers X équivaut a la convergence vers 0 de la
suite (Uj)jZI-
O

Example 4.29 Présentons une autre construction du processus de Lévy a-stable.

Considérons, pour tout t > 0 :

+o0 t
X = /0 L4 (z)dM (s) = /0 dM (z), (4.17)

ou M est une mesure Sa.S sur l'espace ([0, +o00[, Bor(]0, +00[, A)) (A désignant la mesure de
Lebesgue (restreinte a [0, +00[)).
Alors Xo = 0, P-ps. Et par linéarité de 'intégrale stable, pour tous 0 < s <'t:

X(t)—X(s) = / dM (z) = M([s,t]), qui suit la loi S, (|t — s]i0,0) .

Alors, si 0 <t <ty <--- < ty,, alors :

n—1

(X(t2) _X(t1)> X(t3) _X(t2)v 7X(tn) _X(tn—l)) = (/tt2 dM($)7 7/ttn dM(.%')) :

Les composantes de ce vecteurs sont donc des lois Sa.S indépendantes, puisque les inter-
valles [tj_1,t;], pour tout j compris entre 2 et n, sont deux a deux disjoints (M étant
indépendamment dispersée).

Ainsi ce processus vérifie toutes les propriétés caractérisant le processus de Lévy a-stable
symétrique présenté dans 'exemple 4.21. Il est donc bien égal au processus de Lévy a-stable

symétrique construit dans cet exemple 4.21.
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Remarque 4.30 Voici & présent le théoreme de représentation intégrale dans R?, expliquant
quun vecteur SaS dans R? est égal en loi & un vecteur aléatoire dans R? dont toutes les
composantes sont des intégrales stables (par rapport a la méme mesure stable définie sur le

meéme espace mesuré (E,£,m).)

Théoréme 4.31 (de représentation sur R?) Soit X = (X1, -+, X4) un vecteur SaS
dans R,
Alors,

X £ </SdsldM(s), ,/Sd sddM(s)>, (4.18)

ot M est une mesure SaS sur l'espace mesuré (S4,Bor($4),T), ot ' est la mesure spectrale
du vecteur (X1, -+, Xq).

PREUVE DU THEOREME 4.31 : Le Théoréme 4.13 nous donne la représentation suivante que
nous qualifierons de ”spectrale”, pour un vecteur SasS.

Il existe un mesure finie I' sur (S4, Bor($4)) telle que, pour tout © = (61, ---,60;) dans R?,
la fonction ¢x caractéristique du vecteur X est définie par :
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d
$x(0©) =exp | — /S > s dI(s)| . (4.19)

d |j=1

La Proposition 4.27 nous dit alors que la fonction caractéristique ci-dessus est celle du
vecteur </ s dM(s), --- ,/ sddM(s)> , o M est une mesure SaS sur l'espace mesuré
$d $d

(E,E,m) = (S4,Bor(84),I'), la mesure spectrale I' pour ce dernier vecteur aléatoire étant

donc la méme que celle dans la relation (4.19)). Les fonctions caractéristiques de ces deux

X £ </Sd spdM(s), - - ,/Sd sddM(s)>.

vecteurs étant égales :

4.6 Mesure et intégrale aléatoires stables complexes

Les deux sections précédentes peuvent étre adaptées au cas complexe, comme suit :

Définition 4.32 Soit « appartenant a ]0,2][. On considére un espace mesuré (E,E,m).
Et soit & = {A € £ | m(A) < +o0}.
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Une mesure isotrope complexe symétrique a-stable sur & de mesure de contréle m est une

fonction :
E : 50 — L%(Q,]:,IP),

et qui vérifie les propriétés suivantes :
i) 1\72 est indépendamment dispersée.
i) M, est additive.
i11) ]f\lva est isotrope (invariante par rotation), c’est-a-dire : pour tout 0 appartenant a
[0, 27
eieﬂ; £ M‘; .

(égalité en lois de processus, ie : égalité vraie pour toutes les lois fini-dimensionnelles).

iv) Pour tout A appartenant a &, M:(A) est une mesure complexe isotrope SaS de
1

parameétre o = (m(A))a.

Remarque 4.33
— Notons que (i) signifie que pour tout entier n > 1, et pour tous Ay, - - - , A, appartenant
a &, deux a deux disjoints, I'indépendance des variables Z;(Al), e ,E(An) signifie

I'indépendance des vecteurs :
Re (E(Al)) (e <J\7[;(A1)>
om (Ma(4) ) \om (Ma(41))

— Pour tout A appartenant a &y, la fonction caractéristique 1/)]\7[/( A)° est donnée, pour

tout z appartenant a C, par la relation :
Uitoay(2) = E [exp (z me(zM;(A)))] — Al

En particulier, la variable aléatoire réelle %e(m) est SaS de parametre o aussi égal
1

a (m(A))a.

— On peut alors construire une intégrale stochastique par rapport & une mesure aléatoire
complexe symétrique stable isotrope. On commence par les fonctions simples : pour
tout n > 1, et pour tous Ay, .-, A, appartenant a &, deux a deux disjoints, et pour

tous aq, - -+ ,a, complexes :

VeeE, f(x) = Zak]lAk(fU),
=1
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on définit I'intégrale de cette maniere :
/ Fz)dMg( ZakM (Ar). (4.20)

Cette intégrale I(f) :/ f(m)dea(:c) est une mesure SaS complexe isotrope. Sa
E

fonction caractéristique est égale pour tout z complexe a :

i) (2) = exp( (Z\ak\ ) |zya> .

Utilisant un argument de densité, l'intégrale peut étre étendue a une fonction f ap-

partenant a Lg(E, £, m). Nous obtenons/admettons alors :

Proposition 4.34 Soit M\; une mesure complexe symétrique a-stable isotrope sur l’espace
mesuré (E,E,m), alors :
i) Pour tout f appartenant a L&(E), lintégrale L(f) = / g(z)d(x) est une variable

E
aléatoire complexe SaS(oy) isotrope, de parameétre oy = || f||Le(g) et donc de fonction

caractéristique, pour tout z compleze :

Vr(s)(2) = exp <— (Z‘ak‘am(Ak)> |Z|a> - (4.21)

k=1
ii) Linéarité : pour toutes fonction f,g appartenant a Lg&(E), et pour tous a,b complezes,

l’égalité :
[ (@r(@) + b)) =a [ f@)Aa(e) +0 [ gle)dMa(o),
E E E
est P-presque stre.
iii) Pour tout f appartenant a LE(E), Re </ f(x)dE(m)) et Jm </ f(x)d%(m))
E E

sont deuz variables aléatoires réelles suivant a deuz la méme loi SaS(oy) ou oy = || f| e (k)

iv) Soient (fn)n>1 une suite de fonctions et soit f une fonction appartenant toutes a
LE(E). Alors :

st ([ @diTa(o) ) o ote ([ @) ) = g 225 1

5 Serie de Le Page pour les processus SaS définis par des

intégrales

5.1 Série de Le Page de mesures et intégrales aléatoires SaS

Nous allons étudier le cas des mesures SaS.
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Théoréme 5.1 Soit M une mesure aléatoire SaS sur un espace mesuré fini (E,E,m). No-

tons la mesure de probabilité :
m

m(E)’

Soit (I'j)j>1 la suite des instants d’arrivée d’un processus de Poisson d’intensité égale a

m =

1. Et soit la suite de vecteurs indépendants et identiquement distribués ((Vj,v;));>1, et
indépendante de la suite (I'j);>1, telle que :

i) Tous les Vj ont pour loi de probabilité m sur E.

ii) Pourtout j >1:P(y;=1|V;)=P(y;=-1|V;) =

Alors (I’égalité ci-dessous est une égalité en termes de loi de processus) :

l\D\»—\

(M(A) ace = | [cam(E 25377 Lyen| - (5.1)
Ae€

PREUVE DU THEOREME 5.1 : Fixons A € &, et soient pour tout j > 1 : Wj(A)

Alors grace aux hypotheses (i) et (ii), les variables W]-(A)

=Y L(v;en)-
sont i.i.d centrée et prennent toutes

comme valeurs exactement —1, 0, et 1 et vérifiant :
A _ _ 5
E [ i } = P(V; € A) = m(A).

En effet, I'indépendance provient du fait que W} est une fonction (la méme pour chaque j) des

composantes du vecteur (v;, V), et 'hypothese (i) nous disant que les vecteurs (y;, V;) étant

(4)

indépendantes identiquement distribuées, alors les W, sont indépendantes identiquement

distribuées. Et elles prennent toutes comme valeurs —1,0 et 1, car grace a 'hypothese (ii) :
P (W = 0) = P(y; € {~1,1} | V; ¢ 4) x P(V; ¢ A)

= P(V; ¢ 4),
P (WY = =1) = Pl(3; = —1) N (V; € 4)]
=Bl =11 Vi € A) x BV € 4) = TEA),
P (W =1) = Pl(y; = )N (V; € 4)]
P(V; €4)

=P(yy=1|V;eA) xP(V; € A) =
Elles sont centrées, par un calcul simple (ou bien, on a pu observé qu’elles sont symétriques) :
A P(V; € A) P(V; € A)
E(Wj( )) = 1x L= 4 (1) x =L 0 x P(V £ 4) = 0.

Et le calcul du moment d’ordre « :

ay P(V; € A) P(V; € A)
B )= S

+0x P(V; ¢ A) = P(V; € A) = im(A).
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D’apres le Corollaire 3.39, la série Z Wj(A)I’j_a Z% L(y,ea) converge P-presque
§>1 j>1

(4)

strement vers une variable aléatoire Sy (04,0,0), ou 0§ =
Co

Des lors, grace a la Propriété 3.13 (iii), la variable aléatoire M (A) définie par :

M(A) = (cam(E Z% 1v;ea), (5.2)

suit la loi S,(04,0,0), ot 04 = (cam(E)) x 04 = m(A).
Ainsi M(A) possede la méme loi que M (A).

Il reste a prouver que les lois fini-dimensionnelles des processus (M (A))ace et (M(A))aece

correspondent.
Soient Ay, ---,Agq appartenant & £ et deux a deux disjoints. Nous devons montrer que :
E —~ —
(M(A1), -+, M(40) £ (M(Ay), -+, M(Ag)). (53)
Soient 0y, --- 0, des réels, alors grace a I'égalité (5.2) :
d N L 400 1 d
> 0pM(Ag) = (cam(E))= > [ (Zek]l(VjGAk)>] : (5.4)
k=1 j=1 k=1
d d
Considérons, pour tout j > 1, W; = v; Zek]l(vjeAk) = ZGij(A"'), alors la suite (W;);>1
k=1

est indépendante identiquement distribuée, encore centrée car les Wj(A’“), j variant, sont
indépendantes identiquement distribuées et sont symétriques. Et, comme les Ay sont deux a

deux disjoints :
d d

E(Wi]*) = [06°P(Vi € Ag) = Y _|0&]*W(Ag).
k=1 k=1
1 (&
Des lors, encore grace au Corollaire 3.39 : nyjfj « Zek]l(vje Ay) | converge P-presque

§>1 k=1
surement et :

400 1 d d
> oyl e (Zekn(vjeAk)> suit la loi Sa(0,0,0), ot 0 = ¢3! (Zwk\amuk)) . (5.5)
j=1 k=1 k=1

De nouveau, étant données les égalités (5.4) et (5.5), grace a la Propriété 3.13 (iii), la variable
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d
ZHkM(Ak) suit la loi S, (0”,0,0) ou
k=1

d
(0)) = (cam(E))o™ =Y _|6|"m(Ay).
k=1

D’autre part, M étant une mesure Sa.S, elle est indépendamment dispersée, et les M (Ay)

A
sont indépendantes et suivent la loi SaS(oy), out off = m(Ay). Les Propriétés 3.13 (i) et (iii)

donnent alors :

d d
> 0 M (Ag) suit la loi Sa(c”,0,0), ot : (0”)* = |6k|*m(Ax) = (o).
k=1 k=1
d d
Donc les combinaisons linéaires ZGkM (Ag) et ZHkM (Ag) ont la méme loi SaS. Ce qui
k=1 k=1

clot la démonstration.
O

Théoréme 5.2 Soit M une mesure aléatoire SaS sur un espace mesuré fini (E,E,m). No-

tons la mesure de probabilité :
m

m(E)’

Soit (I'j)j>1 la suite des instants d’arrivée d’un processus de Poisson d’intensité égale a

m =

1. Et soient la suite de vecteurs indépendants et identiquement distribués ((Vj,7v;))j>1, et
indépendante de la suite (I'j);>1, telle que :

i) Tous les Vj ont pour loi de probabilité m sur E.

ii) Pour tout j > 1:P(y;=1|V;)=P(yy=-1|V;) =
Alors :

a) Pour toute fonction f appartenant a L“(E), nous avons :

/f )dM ( )écam Z%

b) Nous avons l’égalité en lois de processus :

>

Q=

(I(f)ferem)y = lcam(E)]

+oo 1
>l f(1)
j=1

feL~(E)

PREUVE DU THEOREME 5.2 :
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a)

Soit f appartenant a L®(E), alors pour tout j > 1, f(V;) appartient a L*(E), car,

par le théoreme de transfert :

Liroeware = [ ireran = — [ 17e)ram W 'f“)

(5.6)
Alors, de nouveau (v; f(Vj}))j>1 est une suite de variables symétriques indépendantes
identiquement distribuées et possedant un moment d’ordre «, (la démonstration est

analogue a celle faite dans le Théoreme 5.1) alors d’apres le Corollaire 3.39 :

[cam(E Z%F V) = s (),
| fllze(r) 1

ot S(f) suit la loi S(a%,0,0), avec oy = » m(E)]l [cam(E)]

= [|fllLe(E), Et donc

L

également : I(f) = S(f).

Nous allons & présent prouver que les lois fini-dimensionnelles correspondent. Soit

d > 1, et solent f1,---, fqg dans L*(E). Alors, d’apres la Proposition 4.24, nous avons,
d

pour tous réels ay,--- ,aq, Zakfk(V]) appartient a L*(F), et :

d d
> arl(fr) T (Z%fk) : (5.7)
k=1 k=1

d
Et alors, [ <Zakfk> suit la loi S, (X%,0,0), ou X = . D’autre part,
k=1 L(E)
nous avons :
d d
ST arS(fe) £ S <Zak fk> , qui suit aussi la loi S(%,0,0). (5.8)
k=1 k=1
En effet, les variables aléatoires V; pour tout j > 1 sont indépendantes identiquement
d
distribuées, alors les variables Zak fr(Vj) sont elles aussi indépendantes identique-
k=1
ment distribuées, et ont un moment d’ordre «, en appliquant la relation (5.6), a la
variable Zakfk(vj)
k=1
d
Alors, encore une fois les variables : ’yJZak fr(Vj}), pour tout j > 1, sont indépendantes
k=1
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identiquement distribuées symétriques ayant un moment d’ordre o également, et

d’apres le Corollaire 3.39 :
L 1 d L d
[cam(E)]= 221 vl e <kzlakfk(vj)> o S (kzlakfk(vj)> :
J= = =

d
ou S (Z%fk(%)) suit la loi S(32,0,0). (les calculs sont analogues a la fin de la
k=1

démonstration de (a))
Les relations (5.7) et (5.8) impliquent que : (S(f1),---,S(f4)) £ (I(f1), -, I(fa))-
D’ou I’égalité en loi de processus.

(|

5.2 Séries de Le Page pour des processus complexes isotropes a-stables

Remarque 5.3

— Nous ne présentons pas ici la forme la plus générale du théoréme ci-dessous (plusieurs
théoremes plus généraux se trouvent dans Tagqu-Samorodnitsky [2]), nous présentons
une version ou l'espace F est R. C’est cette version qui nous sera utile pour la section
suivante.

— Nous allons avoir besoin d’un lemme concernant l'invariance par rotation d’une va-
riable complexe, et présenté dans la these de Boutard [9]. Tout d’abord, remarquons
que si une variable aléatoire complexe Z = Re(Z)+iJm(Z) est invariante par rotation
(pour tout @ appartenant a [0, 27[ e Z £z ), alors cela équivaut a ’égalité en lois de

vecteurs de R?, pour tout # dans [0, 27[:

(cos(ﬂ)i)f{e(Z) sin(@)ﬁm(Z)) r (9%(2))

(5.9)
cos(0)Im(Z) + cos(0)Re(2)

Lemme 5.4 Si une variable aléatoire compleze Z = Re(Z) + iJm(Z) est invariante par

rotation, alors pour tout (a,b) dans R? :
aRe(Z) + bIm(Z) £ ||(a, b)||Re(2).

PREUVE DU LEMME 5.4 : Notons v = (a, b).

— Si |lv]] = 0, alors a = b = 0. Et dans ce cas, le lemme est trivial. Supposons donc

[o]] = 0.
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— Si ||v]] = 1, alors il existe un unique 6, dans [0, 27[, tel que :
a = cos(0,), et b= —sin(6,).
La relation (5.9) donne alors :
cos(0,)Re(Z) — sin(0,)Im(Z) = aRe(Z) + bIm(Z) £ Re(Z) = ||v]|Re(Z2),

qui est bien 1’égalité du lemme.

I~

— Enfin si v est non nul quelconque, alors considérons ||[v||~*v de norme 1, en appliquant

le second cas :

a x|yl

Re(Z) + ”vajm(Z) £ Re(Z2) 2 a%Re(Z) + bIm(Z) £ ||(a, b)||Re(2).

o]

0

Théoréme 5.5 (représentation en série de Le Page des processus intégrals SaS complexe)

— Soit M, une mesure complexe a-stable invariante par rotation sur (R, Bor(R), ), ot
A est la mesure de Lebesgue.

— Soit f: R%2 — C, telle que pour tout réel t : f(t,-) appartient a L*(R).

Et soit alors : X; = /+OO f(t,x)dm(x).

— Soit ¥ une mesure de ;)%babilité de densité @ par rapport a la mesure de Lebesque sur
R. Et soit (Z;)j>1 une suite de variables aléatoires réelles indépendantes identiquement
distribuées ayant toutes pour loi de probabilité 1.

— Soit (gj)j>1 une suite de variables aléatoires complexes indépendantes identiquement
distribuées et invariantes par rotation telles que : I [|Re(g1)|Y] = 1.

— La suite des instants d’arrivée (I'j)j>1, d’un processus de Poisson d’intensité égale
1, les suites (gj)j>1 et (Z;)j>1 sont indépendantes entre elles.

Alors :

i) La suite (Yn)n>1 de processus définie pour n entier naturel non nul, pour tout réel t :
Ya(t) = cay 9T “[o(Z)) = f(t, Z;) (5.10)
j=1

converge P-presque sirement pour tout t vers une variable aléatoire Y (t).

i1) Le processus (Y (t))ier ainsi obtenu est égal, en lois de processus, a (X (t))icRr.
PREUVE DU THEOREME 5.5 :
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i) Fixons le réel t. Pour tout j > 1, considérons les variables aléatoires complexes :

V; = g;le(Z)) = f(t, Z)).

Comme les Z; et les g; sont toutes indépendantes, alors les V; sont indépendantes.
Ensuite toutes les V; sont isotropes, puisque les g; le sont et sont indépendantes des

Zj, alors pour tout ¢ dans [0, 27[:
i i 1 c _1
eV = il Zi)| " (¢, Z) = gile Z))] = f(t Z5) = V.

En effet, en passant par les fonctions caractéristiques, pour tout ¢ réel, comme g; et

Z; sont indépendantes, et grace au théoreme de transfert, puisque pour tout x réel :

Geing, () = ¢g,(x), alors :

uny(®) = [ g, [1702)(62) 5] o2)as
= [ 6 [ttt 200 ol = oy, 0
Pour pouvoir utiliser le Théoreme 4.17, il nous reste & montrer que :
E [|Re(V;)]Y] < +oo.

Soit Fz la sous-tribu de F engendré par les Z; : Fz = o({Z; | j > 1}). Et notons :
Ez l'espérance conditionnelle E[ - | Fz]. En appliquant le Lemme 5.4, avec Z := g;,
a:=Re(f(t,Z;)), et b:=Tm(f(t, Z;)), conditionnellement par rapport a Fy :

Re(g; f(t, Z1)) = Re(f(t, Z;))Re(g;) — Tm(F(t, Z;)Im(g;) = |F(1, Z)|Re(gy), (5.11)

I'égalité en loi présente étant 1'égalité des lois conditionnelles de PRe(g;f(t, Z;)) et
|f(t, Zj)|Re(g;) par rapport a Fz. Grace a cette égalité (5.11), au fait que les g; et les
Z; sont indépendantes, que ¢ est la densité des chaque Z;, et que E(|Re(g;)|*) = 1,
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et que f(t,-) appartient & L*(R), nous obtenons :
p(Z)] 7 IR (g, /(1 2))]1" }

{
{
(B2 [lez] ™" 1Be gt 2] }
{
{

%e [910(2) 77 (2. 2,)|

Bz |[p(Z)] ™" £t Z)1" [%e(g))l] }
P(Z)) 7 11t 21 19e(g,)1° }
{le(zI™ 1121} x B(|%e(g,)|)
= [l < o) as
= £t Fm-

Ainsi, d’apres le Théoreme 4.17, et sachant par le calcul précédent que :
E (|Re(V;)|*) = || f(¢, -)H%Q(R), la suite Y, définie par la relation (5.12) converge IP-

presque stirement vers une variable Y (¢) a-stable invariante par rotation de parametre :
1 1
0 =ca X ¢q [E(Re(V1)[*)]* = | fllLow)-

Par définition de I'intégrale stable / fe, x)dﬂ;(x) possede la méme loi que Y (t). Ce
R

qu’il fallait démontrer.
ii) La démonstration est analogue a celle du (b) du Théoréme 5.2. Nous n’en écrirons pas
le détail.
O

Remarque 5.6 Nous avons un résultat analogue, pour des processus SaS définis par les
intégrales d’une famille de fonctions par rapport a une mesure aléatoires SaS sur ’espace
mesuré (R, Bor(RR), A). Voici I’énoncé :

Théoréme 5.7 (représentation en série de Le Page des processus intégraux réels SaS)

— Soit M une mesure compleze a-stable symétrique sur (R, Bor(R),\), ou A est la me-
sure de Lebesgue.

— Soit f: R?2 — R, telle que pour tout réel t : f(t,-) appartient a L*(R).
+o0o
Et soit alors : Xy = / f(t,x)dM (x).

— 00
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— Soit ¥ une mesure de probabilité de densité @ par rapport a la mesure de Lebesgue sur
R. Et soit (Z;)j>1 une suite de variables aléatoires réelles indépendantes identiquement
distribuées ayant toutes pour loi de probabilité 1.

— Soit (g;)j>1 une suite de variables aléatoires réelles indépendantes identiquement dis-
tribuées et symétriques telles que : E[|PRe(g1)|*] = 1.

— La suite des instants d’arrivée (I'j)j>1, d’un processus de Poisson d’intensité égale a
1, les suites (gj)j>1 et (Z;)j>1 sont indépendantes entre elles.

Alors :

i) La suite (Yn)n>1 de processus définie pour n entier naturel non nul, pour tout réel t :
Yn(t) = Caz gjrj “ [QD(ZJ)] af(ta Z]) (512)
j=1

converge P-presque stirement pour tout t vers une variable aléatoire Y (t).

i1) Le processus (Y (t))ier ainsi obtenu est égal, en lois de processus, a (X (t))ier.

5.3 Utilisation des séries de Le Page

Cette section montre une utilisation majeure des séries de Le Page : I'obtention de versions
d’un processus (réel harmonisable) dont les trajectoires sont héldériennes. Pour faire 1’exposé
de cette partie, j’ai étudié plusieurs articles, deux de Kéno-Maejima, un de Dozzi-Chevchenko,
puis enfin la these de Boutard. Les arguments étaient incomplets sur les deux premiers articles
pour des variantes de processus réel harmonisable fractionnaire et pour des résultats plus
faibles, celui de Dozzi-Chevchenko de méme mais présentant le processus le plus général
(multifractionnaire) et le résultat le plus optimal mais une démonstration incompléte, et
dans la these de Boutard, [9] le cheminement le plus complet, mais pour un processus réel
harmonisable fractionnaire. Je présente alors une synthese : une démonstration complete et
adaptée au processus stable réel harmonisable multifractionnaire, avec une optimisation des

conditions de continuité de la fonction de Hurst H.

Définition 5.8 Soient o un réel appartenant a |1,2[ et M, une mesure SoS compleze iso-
trope sur 'espace (R, Bor(R), \).
— Soit H un réel appartenant a |0, 1]

Un processus stable réel fractionnaire harmonisable de paramétre de Hurst H et d’in-

dice de stabilité o est un processus (Zg)ier tel que :

Zu(t) = Re ( /]R ‘e;:; d%@)) . (5.13)
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— Soit maintenant une fonction H : R —]0,1]

Un processus stable réel multifractionnaire harmonisable de fonction de Hurst H, et

d’indice de stabilité v est un processus (Xi¢)ier tel que :

X(t) = Re ( /R %d%@)) . (5.14)

]

Ainsi, pour tout réel t : X(t) = Zp)(t).

Théoréme 5.9 Supposons que la fonction de Hurst H : R —]0, 1], est telle que :
— Pour tout t réel :

0<H=inf H(t) < H(t) <sup H(t) = H < 1.
tE]R, te]R

— La fonction H vérifie la propriété de continuité :
Jeg>0|Vit,seR:|H(t)— H(s)| <cyg (|t —s|) (5.15)

. i 1(2-1)
ot, pour tout 6 > 0: 3(5) = 6" (14 |log(d)])2\e /.
Alors, le processus stable réel harmonisable multifractionnaire X possede une version X ayant
ses trajectoires y-holdériennes, pour tout 0 < v < H. Plus précisément, P-presque tout w de

Q, pour tout T > 0, et pour tout € > 0 :

X(t,w) = X(s,w)
sup ~ — < 400. (5.16)
aelra | [t — s| (1 + log(Jt — s|) )7 137

Commentaire 5.10 L’énoncé du théoréme ci-dessus optimise le théoréme exposé dans l’ar-
ticle de Dozzi et Chevchenko [5], qui lui donne juste comme hypothése sur la fonction H

qu’elle soit y-holdérienne pour un certain réel v > H.

Remarque 5.11 Voici quelques remarques préliminaires.

— Considérons la fonction ¢, définie sur R par :

Cela| 7M1+ [og(|= )] 7%, sz # 0
() = ‘ .
0,siz=0
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Déterminons c. telle que ¢, soit une densité de probabilité.

/ (r)de = 1 <= 2 /m do 1
T Tr = C —
R “Jo T+ [log(x))T

—2 /1 dz 19 /+OO dz 1
C C e
“Jo z (1-— log(x))lﬁ Nz (1+ log(uc))1+£

= e [MK—% {MF -

Donc c
Jal M1+ [log(lal)) ¢ s £0
pe(x) = . (5.17)
0,sizx=0
— Rappelons la regle de convergence pour les intégrales de Bertrand :
oo dt
a)VlS’yge:/ 75<+oo<:>[(a>1)0u(a:1et6>l)],

1 é
bV — <5 <1: / Lﬂ<+oo<:>[(a<1)0u(a:1etﬁ>1)}.
0 t*[log(z)]

Les intégrales suivantes :

+oo dt 1 dt
/ 5 et 3
1 t* [1 + log(x)] 0o t*[1+ |log(x)|]

vont apparaitre dans la démonstration. D’une part, avec le changement u = te :

/+0° dt _ et /+°° du
1 to[1+1log(z)]® e u(log(u))?’

e
D’autre part, avec le changement v = " :

! dt ! dt _ [ dt _a oo dv
/0 to[1 + |log(t)[]? a /0 to[1 — log(t)]? /0 te [log (%)]B /e v2= [log(v))?’

Ainsi, grace a la regle (5.18)

1
| [1+(|11tog<t>uﬂ <toe=[2-a>Nou@-a=tletf>1)

—[(la<l)ou(a=1let f>1)].
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En résumé, nous retiendrons la regle :

oo dt
a)/ —B<+oo<:>[(a>1)ou(azlet6>1)],
1 t*[1 4 log(x)] (5.19)
1 dt .
b)/ B<+oo(:>[(a<1)ou(azletﬁ>1)].
o t*[1+ [log(z)|]
— Une inégalité qui sera utile :
V3> 0,¥t € R |eft — 1]|” < min (|t|ﬂ,25) < 28 min(|¢}%,1). (5.20)

En effet :

‘eit — 1’ < |eit’—|—1 =2,et: }eit — 1‘ — |ef2

t
X |21 sin <>’ =2
2

Donc, la fonction x ++ ¥ étant croissante sur ]0, +oo[.

t t
sin | = §2><u:|t|.
2 2

[ = 1] < min([¢,2) < min(2/¢],2) < 2min([¢], 1)

— |¢* — 1] < min(|¢|?,2%) < min(2%]¢/%,2°) < 2% min(Jt)°, 1).
— Nous aurons enfin besoin d’un lemme qui concerne les lois gaussiennes :

Lemme 5.12 Si une variable aléatoire réelle N suit la loi normale N'(0,02).

Alors pour tout u > 0 :

w2

oe 202

P(|N| > u) <2

omu

PREUVE DU LEMME 5.12 : En utilisant la parité, puis un changement de variable v = ¢2 :

P (N 2 (" g e i
> = 20
(| | u) oV 2T / ‘ oV 2 /J dv

+oo (&} 202 ge 202
< dv =2 .
UCN 27 Jy2 V21U

O
PREUVE DU THEOREME 5.9 :
Nous avons :
. 1 —
teR
Soit
(Y(t))ter = | caPRe Zgjrj “pe(Z) " ("~ 1) 1Z;] o ) (5.21)
J=1 teR
ou :
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— - st la densité de probabilité définie par 1’égalité (5.17).

— (gj)j>1 est une suite de variables aléatoires complexes indépendantes identiquement
distribuées sur (2, F,IP) centrées Gaussiennes.

— (I'j);j>1 est la suite des instants d’arrét d’un processus de Poissons d’intensité 1 sur
(Q,F,P).

— (Zj)j>1 est une suite de variables aléatoires réelles indépendantes identiquement dis-
tribuées sur (€2, F,P) dont la loi est absolument continue et ayant comme densité par
rapport a A la fonction ..

— Les suite de variables aléatoires (g;);>1, (I'j)j>1, et (Z;);>1 sont indépendantes.

Le Théoreme 5.5 nous dit que ces deux processus ont la méme loi.

Considérons les sous-tribus de F :
Fr=c[{Tj|j>1},et: Frz=0[{T;|j =1 U{Z;|j>1}].

Et notons Er et IEr z les espérances conditionnelles respectivement par rapport aux sous-
tribus Jr, et Fr 7 :
Er = E[ . ,]:p], et EF,Z = E[ . ,./—"F’Z].

Et notons, pour tout (¢,x) de R? :

eit:): -1
_, ] 0
fa) = o ST

0,siz=0

L’égalité (5.21) implique que pour tous réels ¢, s, Er  [Y (t) — Y (s)] possede une loi gaussienne
centrée sur R. Alors nous avons, grace au lemme de Fatou, et utilisant le fait que (g;);>1 est

une suite de variables indépendantes identiquement distribuées, et indépendantes des suites
(&5)521, (T)j21 -
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Brz V() - Y(OP] < & Brz{ i |3 T57 [0(Z) 7% [f(5.2) — £t 7))
=1
< cg liminf Bp TS (2] [ (5. 2) = S (1. Z)] gy
j=1
= & liminf Brz{ S0 [OTape(Z)oe(Z0) 7 (G5, 25) — 16 23)) (f (s, Z0) = (¢ 24)) G
1<j,k<n

= ¢ liminf ) 0Tk (Z3)pe(Z1)) = (F(s, Z) — F(8 Z3)) (F (5 Zx) — F(t, Z)) Br 7 (G501)

(2% |f(5,Z5) = £t Z) P Br 2 (Jor )

(5.22)

foa e Z))] % (5, 25) — £t Z) .

les (in)égalités étant IP—presque sures, la derniere égalité venant du fait que les termes sont

positifs.

Commentaire 5.13 Dans les deux articles, l'un de Maejima, l’autre de Dozzi-Chevchenko,
ainsi que la thése de Boutard, [9] dans la succession d’inégalités P-presque sires, ils annoncent
des éqgalités IP-presque sires partout. Or, il s’agit d’étre prudent. Considérant d’abord les par-
ties réelles des processus dans mon mémoire, la premiére ligne est a priori une inégalité (pour
tout compleze z : |Re(2)]? < |2|?) Ensuite la deuziéme ligne, une convergence dominée ne
peut fonctionner, puisque sinon le membre de gauche Er z [|Y (s) — Y(t)|2] serait un élément
de LY(Q), ce qui est fauz puisque la variable Y (t) — Y (s) est a-stable, (pour 1 < a < 2).
Ayant cherché un argument de type équi-intégrabilité, puis de croissance de type convergence
monotone, moins forts que la convergence dominée, je ne suis pas parvenu a justifier qu’il
s’agissait d’une égalité. Alors par prudence j’ai fait usage du lemme de Fatou. Ayant obtenu
une inégalité, la démonstration se complique a [’étape 3, concernant des variances de lois

normales, mais la démonstration aboutit bien au résultat annoncé du théoreme.

79



Nous avons, pour tous réels x, s, t :

F(t2) = fls,@)| = |(e = 1) fo] Z(HOF2) — (eisr — 1) [ ~(H(+2)
= ’(eitx _ eism) |x‘_<H(t)+é) + (eisx . 1) (,x‘—(H(t)-i-é) _ ’x|_(H(S)+é))’

< m—é Ueim _ eisx‘ m—H(t) i lem _ 1| }|x|—H(t) _ |x|—H(s)
(5.23)
Considérons la fonction p, définie sur R, et qui & y associe py(y) = |z|7¥ = e~ loallzly,
Sa dérivée est : pl(y) = —log(|z|)|z|7¥. Alors le théoréme des accroissement finis pour p,

appliqué aux réels H(t), et H(s) nous donne l'existence d'un réel u compris entre H(s) et
H(t) tel que :

| O — [ 7] =Jlog(|])] x |2| 7| H (t) — H(s)|
. (5.24)
<[Tog(Ja]) | max (||, || =) | (t) - H(s)]

En utilisant l'inégalité (5.24) dans 'inégalité (5.23), puis la propriété de continuité de H

(5.15), nous obtenons :

[£(t.2) = F(s, )| < Jal 7 [ |e

el 75 [[ei = 1] x og(jal) | max (Ja| =, 2|77 ) [ (2) ~ H(s)]]

i(t—s)z _ 1‘ |$|—H(t)}

< 2fa| 7% [min(|t — s ], 1)z 7]
_1 . _H _g
+ 2|5 [min(Jsl|z], 1) 1og(Jo) | max (Jo| =, 2 ~7) |H(t)  H(s)]
< 2faf % min(|t — sje], 1) max (|2 7, || )

1 . _I7 i
+ 2¢q ||~ min(Js| ], 1) Tog )| max (|| =7, || =) 3¢ - s1).

(5.25)
Soient pour tout 0 tel que 0 < 6 < min(1,7) et ¢,s dans [T, T}, tels que |t — s| < 6.
Nous allons chercher & majorer Er z [|Y (¢) — Y (s)[*] .
En appliquant 'inégalité (5.25), pour x = Z; :
N & 4
F(6.25) = (5. 25)| < 2max(en, T, )| 2|7 max 12,7, 21~ 526)

x [min(4]Zj], 1) + min(|Z;], 1)[ log(]Z;])[0(0)]
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En élevant au carré, et en utilisant de I'inégalité : pour tous réels a,b : (a +b)? < 2(a®+b?) :
F(6.25) = (s, Z5)* < dmax(chy, T2,1)|25[ % max 12,727, |2,

x [min(6]Z;1, 1) + min(| Z;, 1)| log(| Z;]) ()]

) _ . (5.27)
< Smax(ch, 7% 1)/ 2, =% max ||, 77, | ;27|
x [min(6%Z;|%, 1) + min(|Z;[%, 1)[log (| Z;])[*(3(0))?] -
Alors nous obtenons, en désignant par co la constante : 8 max(7?, ¢, 1) :
N(s,t) < o 3(d) (5.28)

ou J(d) désigne :
oo ) . .
S (123[0e(23) "% max (12,1727, 12,127 [min(8?| 22, 1) + min( 242, 1) los(1 Z,]) P(3(5))?]
= (5.29)
En désignant par ¢; la constante : c2co, et en faisant usage de l'inégalité (5.26), P-presque
stirement :
Erz [[Y(8) = Y(s)P’] < ciE[lg1/*)3(5), (5.30)
Décrivons a ce stade les quatre étapes de la démonstration :
— Etape 1 : Nous allons prouver qu’il existe une constante c3 > 0 telle que P-presque

surement :

—+00 9 - 9
Er [2(0)] < es [ Y077 | x 627 [1 4 |log(18) ) (2 10+ (5.31)
j=1

— Etape 2 : Nous allons prouver que :

Lo 30
P lim —~ 2 —0]=1 (5.32)
oo 9-2jH jo (1+e)

— Etape 3 : On note pour tout j € IN, lensemble dyadique Dj r de niveau j dans [T, T,

ainsi que ’ensemble D7 des nombres dyadiques dans [T, T, soit :

k o
'Djj = {2] | ke [—QJT,2JT] N Z} , et Dp = UDLT‘
JEN
Nous savons que Dy est dense dans [—7', T|. Nous allons alors montrer qu’il existe une

constante ¢; > 0 telle que I'évenement €4 (7) suivant est P-presque str :

‘TT:.U]N{ N {xO =X <alt—s 1+ og(lt - s <2} (5.33)
J€e s,tEDp
|s—t|<2~7
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— Etape 4 : Nous construisons une modification <)/(\/T(t)> T de (X(t))te[—r,m) qui
EE— te[-T,

satisfait : pour tout w € (fl\;/r, il existe une constante ¢, 7 > 0 telle que pour tous
s, t € [-T,T]:

Xr(t) = Xr(s)| < curlt — sl [+ [log(lt — )] =2 (5.34)
Etape 1 : Comme (I'j)j>1 L (Z;)j>1, alors par convergence monotone :
+oo )
Er[3(6)] = | Y ITyl7= | x [T1(6) + T2(0)], (5.35)
j=1

1,(6) =B [(1Z1lp-(21)) " max (|21 727,217 ) min (6722, 1)
T2(8) =B [(1Z11-(20)) =% max (121727, 20|72 ) min (124 %, 1) [ log(12a)* (9(6))?]

Nous allons majorer les intégrales Z;(9), et Z3(d) afin d’obtenir I'inégalité (5.31). Z;

ayant comme loi ¢..A, alors, utilisant la parité :
_2 2 —off -2\ .
Ti(6) = / ()"~ [l = max (| =2, || 2 ) min (622, 1) da
R
+00 ~ ~
=2 / (305)1_% 2% max (m_2H, x_QH) min (52:U2, 1) dz (5.36)
0

= 2[ 7,1(0) + T1(0)].
ol :
5 ~ ~
Z1,1(9) —/5 (905(1'))1_% 2~ w622 max (x_QH, x_zH) dz
0
+oco N B
Z1,2(9) :ﬁ (tpg(x))’% % max <m—2H7$—2H) da

é

D’une part, effectuant le changement de variable y = dz, dans Z; 1(0) :

Zi1(6) = /0[1; 52 (Z)l_i 222 [ﬂc (1+ |log($)|)1+5} =) max (x_Zﬁ,a:_Qﬁ) dx

1 2
_ [T (e\a —2H _—2H —(1+¢)(1-2)
—/0 J <4> x max (x , T > (14 |log(x)]) dz

=[O e () ) e pes ()T

Comme 0 < 0 < 1, alors x — 6% décroit sur R, et donc :
min (5-21?1 §2H ) — max (523’ 52 ) _ 52H
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Des lors :

Z11(0) = (Z)li 521 /01 Y max (y—zﬁ’y—zﬁ) [1 + ‘log (%) H (G109 dy. (5.37)

y appartenant & ]0, 1[, alors y =2 €]1, +o0], et alors z + y~ % croit sur R, donc :
V y €]0,1[: max <y_2ﬁ, y_zﬁ) = y_QH.

Ainsi l'intégrale dans (5.37) devient :

T1.1(6) = (Z) 1-2 621? /01 yl_QfI {1 n ‘log (g)H(l—s—s)(z—l)) .

Nous avons :
1+ flog (%) = 1+ llog(y) — log(9)
< 14 [log(y)| + [1og(0)|
< 1+ [log(y)| + [log(d)[ 4 [log(y)|[ log(0)|
= (L+ [log(y)]) (1 + [log(9)])

) (5.38)
)

Et comme (1 +¢) (2 — 1) > 0, D'inégalité ci-dessus devient :

1+ frog () ] TG 4 og) G 14 log(e))OGE D (5.39)

Utilisant I'inégalité (5.39), I'égalité (5.37) devient :

7a0) < (5) 707 ([ 0k o) )1+ gy

D’apres la regle (5.19), comme 2H —1 < 1, alors :

1 Ir 2
/0 y 27 (14 1og(y) [ 19N dy < oo,

et donc, en posant la constante :

= () (/01 y' 721 [1 + | log(y)| *+9 (G dy) ,

nous obtenons :
T11(6) < e118%7 [1+ [log(8)) 9 G (5.40)

D’autre part, en procédant de méme pour Z; »(J), par changement de variable y = dx :

Ti2(6) = (Z)l—i 52 /1+°° e (y_Qﬁ’y—2ﬁ> gt (1 n ’10g (%) D(1+s)(§—1) a.
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Cette fois, y > 1, alors max (y_Qﬁ, y‘Zﬁ) = y_Qﬁ. Faisant usage de 'inégalité (5.39) :

T12(0) < (6)1_2 o (/ Ty (14 1og(y))0+9(3) dy> 1+ log(3) (=)
1

4
(5.41)
D’apres la regle (5.19), comme 2H +1 > 1, alors :
+o0 ~
/ y 172 (1 4 1og(y)] G dy < foo.
1
Et donc, en posant par la constante :
e\1-2 oo of 2_
ez =(3) </ y 2 1+ log(y)) Y dy) :
1
nous obtenons également :
T 2
T12(8) < c126°7 [1+ [Log(6)[) (1) (5.42)

Passons a la majoration de Z3(9) :

I5(0) =
E [(1Z1lp<(20))" % max (121727, 1] 27 ) min (1212, 1) [10g(124])* (3())”
= 2(8(5))> / T (el EE max (ﬂf’ ﬂﬁ) min(z2, 1) |log(z) |2 dz
0 , ,

+oo max (z_QH, x_2H> min(x2, 1)

—o(< e 2 og(x)|?dz
B 2(4) 0(2)) /0 :1:[1+|10g(:£)|](1+5)(1—§) [ log(z)"d

=2 (§>l_a (3(6))? [Z21 + 2] ,

(5.43)

ou :
1 max (x’QH, x’2H> min(x2, 1)
L= | | log(a)Pda
0z L+ |log(a))FI0-E)
+00 max (m‘Qﬁ, x_Qﬁ) min($2, 1)
22 :/ (1+e)(1-2)
1 z [1+ [log(z)|] o

D’une part, comme |log(z)[2 < (1 + |log(z)])? :

|log(z)[*dx

To1 :/01 :clf?ﬁ 1+ ]10g(a;)|](1+8)(%_1) (log(m))zdx

1 ~
< [ 272 14 log(o)) G2,
0
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intégrale qui converge d’apres la regle (5.19) car 1 — 2H < 1. D’autre part :
1 7 2
Das [ 1 log)] 4G ag,
0

intégrale qui converge, d’apres la regle (5.19) car 1 + 2H > 1.

Des lors, en notant la constante :

e\1-2
co =2 (—) [Z21 + Z22],

4
(3-1) .

N

en rappelant que : 9(6) = st [1 4 |log(d)|]

T (8) < 2 (3(8))? = 20 [1 4 |Tog(9)) (5 ™) < 2627 [1 + |log(5)| 1+ (1)
(5.44)
Combinant les inégalités (5.40), (5.42) et (5.44), et en posant c3 = max(ci,1,¢1,2,C2),

I'inégalité (5.35) devient finalement :
“+o00 s N .
Er[30)] <es | YT, | x 627 [1+ [log(ls))))(a D0+
7j=1

I'inégalité (5.31) annoncée.

Etape 2 : D’apres la loi forte des grands nombres, (argument déja vu dans la démonstration

du Théoreme 3.36) il existe deux variables aléatoires réelles P-presque strement stric-

tement positives C7, Cy telles que :

Q) = ﬂ {C1j <Tj < Cyj}, est P-presque sur.
jeN

Comme % > 1, alors pour tout w dans fAZI :

+00 +o0
> (0@) T < (Cow) T [ DD 57F ) < oo
Jj=1 j=1

Pour tout k > 1, en prenant § = 2%, alors :

521 1 4 [log(|)[](3~D0+) = 92k (1 4 1og(2)](B-1)0+)
< 272 [(1 4 log(2))4] (5710

Des lors, en posant ¢4 = c3 x [(1 +log(2))k](%_1)(1+5), et sachant que l'inégalité

—+00 9
(5.31) est PP-presque stire, et comme ZF]- * | < 400 p est aussi P-presque str,
7j=1
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alors I’événement :

G= (4B [27)] <er | 3157 | x kGO § < o
kelN* ;

est IP-presque stir. Alors, pour tout w dans flvl N flvg :

<= —k = +0o
Er [j (2 )] (w) 2 _2 2
Z 9—2kH |, 2(1+¢) = Z cak” e [Cr(w)] e 2.7 ° < +00.

Soit I’événement P-presque sir :
400 —k
o Er [3(27)]
Q = e —— .
3 {Z 9—2kH |, 2 (1+¢) <o
k=1

Et soit alors ’évenement :
_ +o0 | (2_k)
= {Z =) el
_ 2 (14
e 9-2kH o (1+e)
Alors cet évenement est P-presque sur aussi. En effet, par convergence monotone (les
égalités étant IP-presque stires) :

S

E - =< 9 ..
r 1; 9—2kH |, 2 (1+¢)

=Er

(27)
nlf}rzo Z 92— Qka, 1+6]

- 327
s 400 Z: 2—2kﬁki(1+a)] (5.45)

= lim 1 Z )] _ < Er 32"

n—s+oo 2— 21<:Hk (14e) Zl 9—2kH . 2(1+¢)

= lim+ Ep

Ainsi, (5.45) implique :

() = E(lg) = F [Er(lg)| = E(lg) = P(Q) = 1.
Et alors finalement,

— 32 ) @)

“’694‘:’2 < 400 = lim :(2%)(“))

o—2kH 1, 2 (1+¢) nrtoo 9 2kH2Z(14e)

De sorte que ﬁ; C Q5, ou :

575:{ lim W:o}, (5.46)

k—+oo 9—2kH |5 (1+€)

d’ott la conclusion (5.32) de ’étape 2.
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Etape 3 : Rappelons que pour tous s, ¢ dans [—T,T], tels que |t —s| <4 :
= _2 2
R(ts) = D0 0= [o(Z)) = (s, 2)) = (. Zy)
j=1
Y (t) — Y (s) a pour loi conditionnelle par rapport & Fr z la loi normale N(0, ur z),

() ()]}

D’apres I'inégalité (5.22), P-presque stirement :
1
(urz)? < ca [E(l91%)]

ou :

Ur,z = {EF,Z

(SIS

(Rj0)2 (5.47)

N - . L k k+1
ou N; ;. désigne la variable aléatoire : N <2j, 23>
Soit I’évenement appartenant a Fr z : Bjr = {w € Q | pr z(w) = 0}. On va montrer
que :

P(B;x) =P (15,,) =0. (5.48)

Ainsi on aura montré que ur z # 0, P-presque stirement. Tout d’abord, pour tous s,
réels distincts, {w € Q | (Y(t) =Y (s))(w) # 0} est un événement PP-presque siir.

En effet, car Y (¢) — Y (s) suit une loi stable absolument continue, donc :

{weQ | (Y(t)=Y(s))(w) #0} = (Y(t) — Y(s) "1 ({0}) est de probabilité nulle.
v -x[sunfs(551) - (3) )
o () ()] #o)

Par ailleurs : 1g;, étant Fr z-mesurable.
2
(5 G}
9 9

E {]IBM X [Y (k; 1) -Y (;)T} =K {]lzaj,k x Er 7
(5.50)

=E [15,, x 0] = 0.
k+1 k\1?
Donc la variable positive 15, , % [Y < o ) -Y <2j>] est nulle IP-presque stirement.

Alors, en utilisant la relation (5.49), nous obtenons : P(B; ) = 0. Ce que nous voulions

Ainsi :

(5.49)
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montrer. L’inégalité (5.47) implique aussi que R; ; est strictement positive P-presque

sturement. Alors, I'inégalité (5.47) devient :

(NI
=

(Njr)"2(pr,2)2 <5, (5.51)

1 E+1 k
ou f =cqy []E(]g1|2)] 2 . Enfin, (Mr7z)_% [Y <;> -Y <23>] a pour loi condition-
nelle par rapport & Fr z est N'(0,1).

Considérons, pour tout j entier naturel et pour tout k appartenant & [—2/T,2/T|NZ :
—~ E+1 k _ 1 1
- (552) - ()] s

En utilisant le fait (5.48), le Lemme 5.12, avec u = 1/3log(2)j, l'inégalité (5.51) :

P(Q,0) = E(l~—) = [Er z(1g )]

Qﬁjk

e [ (57) ¥ (o) > vowemionnt)

= {ina)teng || (550) v (5)|| > 57 vEToR@iE 00kt
Al

< P{(urz ~iE < > (;)H > 3log(2)j%}
) (V310815)’
< exp |-~
V2m4/310g(2)j 2
N S, [_ 3j log(2)] .
67 log(2)v/7 2

(5.52)

Soit a présent I’évenement :
%= U Qg

ke[—21T,21TINZ
kE+1
= max Y +
ke[-2iT 21 TINZ 27

N

[N k]

—Y(fj)’ > \/310g(2) j

N|=
Hf_/
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En utilisant I'inégalité (5.52), pour tout k dans [—-2/T,2T|N7Z :
r (66/9) < > P (Qﬁ,j,k>
ke[—20 T, 29TNZ
i
S -
ke[—2iT 21 T|NZ 67 log(2)v/j

2exp [ 0i+2=3i 4 91-3i AT + 2
= <

Vorlog(2)vi  /6mlog(2)V] _\/Gwlog(2)2 E

(5.53)

qui est le terme d’une série convergente. Le lemme de Borel-Cantelli nous dit alors

< (2T +1) x

que I'évenement : lim Jirnf (6 ; est P-presque impossible. Alors I'événement :
n—-—+0o0

Qg = Q\ |:]7igl41_1£ Qﬁ’j:| = lilgigg) Q \ QGJ‘ (554)
est IP-presque siir. Soit alors :

Q7 = Q5N O,
ou ﬁ; désigne I’éveénement de ’étape 2, (5.46). Nous allons prouver que QNT défini
par la relation (5.33) contient Q7, et donc Qp sera P-presque sir (but de ’étape 3).
Soit w € (AZ;, alors d’apres la définition de ﬁg, il existe Jj(w) > 1 tel que pour tout
j > Ji(w) et pour tout k appartenant & [—2/T,2/T| N Z :

‘Y ("jlw) v <2"'w>‘ < V/310g(2) 7 (Nu(w))? (5.55)

D’apres la définition (5.46) de Qj :

—Jj
A m = (5.56)
Or, d’apres l'inégalité (5.28) :
(Rj(@)? < Ve [3(27) )2 (5.57)
Alors, il existe Jo(w) > 1 tel que pour tout j > Jo(w) :
: 1 P
3eY) W) < 360110g = <2 (5.58)
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Donc, en désignant par J(w) le maximum de J;(w), et Jo(w), pour tout j > J(w), les
relations (5.55) et (5.58) donnent :

‘Y (l‘;;lw> -Y (;w>‘ < 3log(@) jt [3(27) ()]?
(5.59)

A\
w
@)
o
—_
Q
O]
—
[\)
~—
<.
N
z
<.
B
—
&
~—
[NIES

Soit n > J(w), nous allons démontrer par récurrence que pour tous m,n tels que

m > n, pour tous s,t appartenant & D,, 7, tels que 0 < |t —s| <27 :

m
Y(tw) - Y(s,w) <2 Y 27 jatits, (5.60)
j=n+1

t et s ayant un role symétrique, on peut supposer s < t. Si m = n + 1, on ne peut

. k k+1 1 1
av01rques:2—m,ett:27. t_S:W<27 .
k+2—-k 2 1

gm gnfl T g0’

l
Eneffet,si:s:2—m,ett:Q—m,pourl>k+1,alors:t—32

Alors, d’apres la relation (5.59) :
¥ (t,w) = Y (s,0)] < 270 DF (1) +5+3,

Supposons que la relation (5.60) soit vraie pour un certain m strictement a n.

Soient alors s,t appartenant a D, 11 1, tels que s < t. Et soient :

t1 =max{u € Dy, 1 | u < t}
{31 =min{u € Dy | s < u}

Alors :
s<s1 <t <t Y (s1,w) = Y(s,w)| SQ—(mH)ﬁ(m +1ydestd
51— s <2 (M) Donc : ! i
t—t, < 2-(m+D) V() — Y (t1,w)| <2~ DH (g 4 1)a+a+s

Par hypothese de récurrence, comme s1,t2 appartiennent a Dy, 7, et grace a I'inégalité

triangulaire :

Y(t,w) =Y (s,w)| < |Y(t,w) = Y(t1,w)| + |Y(t1,w) — Y(s1,w)| + |Y(s1,w) — Y(s,w)|

m
< 2x 2 mDH(y 1)atEts p o Y onif jutis,
j=n+1
m—+1 - .
-9 Z 2 IH j3tats,
j=n+1
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ce qu’il fallait démontrer.

Soient maintenant s et ¢ appartenant a Dy, tels que s < t, et tels que : t — s < 2=/ (W),
Alors, il existe un unique entier n tel que :
o=t <t s <27, (5.61)
Grace a I'inégalité (5.60) :
= 7.1 1
V't w) - Y(s,w)| <2 > 279 jatats
j*n—l—l
_222 (j+n+1)H j+n—|—1) +£4+1
1—(n+1)H 2 (R iH J atats
= ol-(n+ latatz 21 (1
(n+1) Z + n+1
7=0
7 2 1 I 7 2 1
S 21—(71+1)H(n_|_ 1)E+E+§ Z 2—]H (1 _’_j)a+a+§
j=0
= 5 27D (1) tEs,
(5.62)
+oo
N _iH N24e4 1
ou ¢; est la constante : 2 x Z 2777 (14 j)a"a"2 | < +o0. Nous avons :
§=0

27t <y s <2
= — (n+1)log(2) <log(t —s) < —nlog(2)
= nlog(2) < |log(t — s)| < (n+ 1)log(2) (5.63)
= (n+1)log(2) <nlog(2)+1 <1+ |log(t—s)| < (n+1)log(2)+1
= [(n+1)log(2)]a Ta+2[1 + | log(t — s)[]a*a+2.

Donc :

Qv

[1+ [log(t — s)[Ja*a+
(log(2))atats

Grace aux inégalités (5.61) (5.64), I'inégalité (5.60) devient :

l\’)\)—l

(n+1)atats

IN

(5.64)

Y (t.w) Y (s,0)] < e5(log(2))” a2t — 5|1 + log(t — s)| 74543, (5.65)

En posant ¢; = 05(10g(2))_(%+§+%), Pinégalité (5.65) signifie donc que w apartient a
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QT, ou :

w=U N {\Y(t)—Y(S)I SC1!t—8!ﬁ[1+\log(|t—s|)|]lig+%},

J'EIN{ s;t € Dr

|s—t|<2

Mais pour chaque indice ¢, s dans cette réunion d’intersection dénombrable, Y (t)—Y (s)
possede la méme loi que X (t) — X (s). Donc, w appartient bien a Qr.
Ce qui clot Iétape 3.

Etape 4 : Nous construisons une modification (X}(t))
tisfait :
i) Si w n’appartient pas a ﬁ;, )A(}(t) = 0 pour tout t dans [T, T].

tE[—T,T} de (X(t))te[*T,T] QUI sa-

ii) Si w appartient a ﬁ;r, et si t appartient & Dp, alors posons )/(\;(t, w) = Xp(t,w)

iii) Si w appartient a Qr, et si t appartient [—T,T] \ Dr, alors nous définissions
)f(\;(t, w) comme étant la limite de la suite de réels (X7 (tn,w))nenw U (tn)neN est
une suite d’éléments de Dr et convergente vers t.

Apportons une précision au troisieme cas, une telle suite (f,)nen suggérée dans ce

cas (iii) par densité de Dr dans [—T,T]. Ensuite, w appartenant a (ff[, la suite

(X7 (tn,w))nen converge bel et bien, car pour tous entiers naturels n et m

1+5_,’_

| X7 (th,w) — X7 (tm,w)| < c1lt, — tm|H [1+ [log([tn — tm|)|] = ) (5.66)

[SIE

le membre de droite tendant vers 0 quand n et m tendent vers +oo, car 0 < H<1.
La suite (X7(tn,w))nen converge car elle est alors de Cauchy.
Enfin la limite )’(:;p(t) de cette suite ne dépend pas de la suite (¢, )nen choisie. En effet
soit (sp)nen une suite d’éléments de Dy et convergente vers t. Alors nous avons, grace
a l'inégalité (5.66) appliquée a (sp)n

|XT(S7L7 W) - XT(t7w)’ < ‘XT(SWJW) - XT(tTMw)’ + ’XT(t,,” LU) - XT(t,(U)’

7 lfe 1

cltn — tm|® 1+ [log(|tn — tm|)|] = T2 (5.67)
+ |j(\;(tnvw) - X\;(t’w”'

A

Le membre de droite converge vers 0 quand n et m tendent vers 400, car encore une
fois le terme de type Cauchy tend vers 0, et parce que Xp(t,,w))neN converge vers
)/(\;(t) Ainsi la suite (X7(sp,w))nen converge aussi vers )/(\}(t)

Montrons & présent que X7 vérifie I'inégalité (5.34).

w appartenant a (2;‘, alors il existe J(w) > 1, tel que pour tous ', ¢’ dans Dy tels que
[t — ¢ < 27 .

1+5+

IX7(#) = Xp(s)| < ealt! — |7 [1+ [og([t' — &/])[] =

2 (5.68)
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Soient ¢, s appartenant a [T, T, et tels que |t —s| < 277(). Alors il existe deux suites
(tn)n €t (8p)n d’éléments de Dy, convergentes respectivement vers ¢ et s et telles que
pour tout entier naturel n : |t, — s,| < 277/®),

Alors, grace a l'inégalité (5.68), pour tout entier naturel n :

Jun

1+s+

| X7 (tn) — X1(s0)] < c1ltn — Sn’H [1+ [log([tn — sn|)[] = 72 (5.69)

Faisant tendre n vers +o0, on obtient la méme inégalité (5.68) cette fois pour tous ¢
et s de [~T,T] tels que |t — s| < 277, En particulier, nous avons bien que X7 est
P-presque strement continue sur [—7, 7.

Montrons que ()f(:;r(t))te[,T,T] est une modification de (X (t));c[—7,1]- Par 'hypothese
(ii), et par le fait que P(€2) = 1, nous avons que pour tout ¢ dans Dy : X7 (t) = Xr(t),
P-presque siirement.

Si t appartient a [T, T|/Dr, choisissons une suite (t,), d’éléments de Dr et conver-
gente vers t. Par définition de Xr (cas (iii)), nous savons que PP-presque stirement,
(X7 (tn))n converge vers )/(\;(t)

Ainsi pour montrer dans ce cas que P-presque stirement : )/(\;(t) = Xp(t), il suffit de
prouver que (Xr(ty)), converge en probabilité vers Xp(t).

Par définition de I'intégrale par rapport a une mesure stable :

Xr(ty) = /R f (b, 2)d Mo (z) —E— /R £t 2)dMo () = Xp(t)

n—-+o0o

f(ta )

L*(R)
< f(tn,")

n—-4o0o

Nous allons faire usage du théoreme de la convergence dominée. Partons de I'inégalité

(5.25), pour tout réel non nul x :
[F(tn @) = £(t,2)] < 2faf 78 min(|t, — tlle], 1) max (jo] 7, |2|~7)
1 . 7~ 7/\
o+ 2¢y ||~ minJt] o], 1)] log(|])| max (|| =, =7 ) 8]t — ).

La quantité ¢, —t| tendant vers 0 il existe un rang N, > 1 tel que pour tout n > N, :
min(|t, — t||z|,1) = |[t, — t||z|. Et donc :

2]a:|*é min(|t, — t||x], 1) max <|x]*ﬁ, ]a:\*ﬁ) — 0.
n—+oo

Et,
Ot — t]) = [t — t177 (1 + [Tog(t — t])])2 (&7 —— 0,

n—-+0o0o

93



car 0 < H < 1. Donc | f(tn,-) — f(t,-)| ),
n—-+00

D’autre part, pour tout réel z non nul, grace a I'inégalité (5.20) :

|6itac_1|a
o
|f(tn, )™ = EEEEE

_ yamin (], 1)

: T
< Wgzamm(ma’l)ma}((m 1-afl |y -1-0 )

Soit g la fonction définie pour tout x non nul par :
glw) = 2 min (jo|*, 1) max (|a| 770, |z 17 )

(et g(0) = 0) Alors cette fonction g est mesurable positive et appartient & L'(R). En
effet :

1 ~ ~ +oo ~ ~
/ g(x)dx — ga+l [/ max (x—l—oaH’x—l—oaH) 2%dz +/ max (m—l—aH7m—1—o¢H> d$:|
R 0 1

1 ~ 400 ~
= 20! [/ g ire(=H) gy —I—/ x_l_O‘de] < 400,
0 1
car 1+aH >1et —1< a(l— ﬁ) —1 < 0. Par le théoreme de convergence dominée :

LT 0 f(t,), done : Xo(tn) ——s Xop(2).

n—-+o0o n—-+o0o

f(tm )

Ce qui clot Iétape 4.
Nous pouvons alors définir une modification (X (¢))ser de (X (t))ier telle que pour tout w

appartenant a I’évenement IP-presque sir ﬂ ﬁ} Et I'inégalité (5.16) est vraie. Ce qui clot

TeN
la démonstration.

0

6 Conclusion

Nous avons pu voir que les séries de Le Page permettent d’obtenir des modifications de
processus définis par des intégrales pour lesquelles les trajectoires sont hoéldériennes. Et que
cette méthode a pu aboutir pour un processus réel harmonisable multifractionnaire Sa.S, sous

certaines conditions sur la fonction de Hurst associée.

Des développements en séries de Le Page existent pour des variables aléatoires stables

quelconques (pas symétriques nécessairement). L’égalité est encore P-presque stire. Tout ceci
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est développé dans le livre de Taqqu-Samorodnitsky [2].

Enfin une question implicite a ce mémoire :

Est-ce que tout processus SaS, (pas nécessairement défini par une famille
d’intégrales SaS), a un processus SaS défini pas des séries de Le Page et qui
lui soit égal en loi de processus?

Une erreur a priori dans l'article de Marcus-Pisier [5] était de croire que tout processus SaS

(Xt)ter pouvait étre égal en loi de processus & un processus défini par des intégrales par

rapport a une mesure SaS M sur 'espace mesuré (R, Bor(R), \) :

</R f(t,m)dM(m)>t6T, o (f(t,))eer C L°(R),

processus que les auteurs nommaient ”strongly stables” pour lesquels, en vertu du Théoreme
5.7 (qu’ils démontraient), il existe un processus défini en série de Le Page qui lui soit égal
en loi de processus, l'erreur résidant dans le fait que I’espace mesuré pouvait toujours étre

(R,Bor(R), \). L’article de Kéno-Maejima [(] signalait alors cette erreur.

Pour répondre a cette question, le théoreme suivant (que nous admettrons et qui généralise
le Théoreme 4.31 de représentation sur R que nous avons démontré) nous dit que tout
processus Sa.S est toujours égal en loi de processus a un processus défini comme une famille

d’intégrales SaS par rapport & une mesure Sa.S sur un espace mesuré (E,E,m) :

Théoréme 6.1 (Bretagnolle, Dacunha-Castelle, Krivine (1966), Schreiber (1972))
Soit T un ensemble non vide quelconque. Soit (X (t))ier un processus SaS pour un certain
0 < a < 2. Alors il existe un espace mesuré (E,E,m), une mesure SaS sur (E,E,m) et une
famille (f(t,-))ier C L¥(E) telle que :

Xer £ ([ r0a))

E teT

Néanmoins, ’espace E considéré dans ce théoreme peut dans cette construction étre com-
pliqué & exploiter, car E n’est pas en général R, [0, 1], ou $,.
Nous avons une réponse positive a cette question avec E = R, ou [0, 1] pour une grande classe
de processus SasS, présentée dans le livre de Tagqu-Samorodnitsky [2].
D’abord le Théoreme 4.31 de représentation sur R? qui concernait une famille finie de lois
SasS, se généralise a une suite de lois SaS (il donne une représentation pour les lois fini-
dimensionnelles), et I'espace E est [0, 1].
Ensuite lorsque le processus (X (t))ier vérifie une condition de séparabilité que nous définissons

ci-dessous :

95



Définition 6.2 Soit (X (t))ier un processus stochastique. Alors on dit qu’il vérifie la condition (S)

s’il existe un sous-ensemble Ty dénombrable de T telle que pour tout t dans T, X (t) est la

limite en probabilités quand n tend vers 400, de somme de la forme :

n
Zan,jX(th), ou : {
7j=1

{an; | n,j e N} CR,
{th‘ | n,j € IN*} CTy

Et nous avons alors :

Théoréme 6.3 Soit a appartenant a ]0,2[. Et soit (X (t))ter un processus SaS vérifiant la
condition S, alors :

xomer £ ([ 1 FpaE)

teT
ot (f(,t)ier C L([0,1]), et M est une mesure ScuS sur l’espace ([0, 1], Bor([0, 1]), Aj,1)-

Je remercie chaleureusement M. Ayache pour ce mémoire fait ensemble.
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