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Paths behavior of MBF

(Q,G,P) is a complete probability space.
The integer N is arbitrary and fixed, and | - |, denotes the Euclidean norm on RV,

Let H be a function on RN with values in an arbitrary compact interval
[H, H] C (0,1).

Definition 1 (Multifractional Brownian Field (MBF))
For all t € RV,

it-& 1 P
z()= | ) (L)

where W is the orthogonally scattered measure of a Brownian measure W with
Lebesgue control measure on RV,
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Paths behavior of MBF

e When N =1 and H is a constant function (Hurst parameter), Zg is the
Fractional Brownian Process (FBP) introduced by Kolmogorov in the 40s’, made
famous by Mandelbrot and Van-Ness in the 70s’. It was shown that the pointwise
Holder exponent of FBF is almost surely equal to H on every point on RV. And
when H = % we recognize the Brownian motion.

e Making variable H was an idea introduced in the 90s' (Benassi, Jaffard, Peltier,
Levy-Vehel, Roux). The following simulation illustrates that regularity of Zg is
controlled by the Hurst function.

H(t) — H
Precisely, if we assume for any fixed 7 € RN, lim M

=0, then the
t?T |t — T|2

pointwise Holder exponent on 7 of MBF is almost surely equal to H(7).
(See e.g., Ayache (2018), Theorem 6.17.)
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Paths behavior of MBF

Simulation for a Multifractional Brownian Process with a choice of H

0.6 T T T T
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-0.2 ]
~0.4 Simulation of Multifractional Brownian
Process with Hurst function :
—06h H(t)=0.1+0.06t, t=0.
-0.8 ' ' : : : :
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Framework and background

Let « € (0,2) be the stability parameter.

Definition 2 (The Harmonizable Multifractional Stable Field (HMSF))
For all t € RV,

et —1
Z(t) = m@[/}RN WdM&(&)}? (22)

where Ma is the complex-valued isotropic Sa'S random measure on R" with
Lebesgue control measure, and where t - £ is the inner product between t and £ on
RV,

v

A general question for such a non-Gaussian extension is to know if one
preserves the regularity property as MBF. In this talk, we will bring an
answer.

According to the following frame, the marginal symmetric a-stable
distributions for such extension, are heavy-tailed, and only have moments
of order 0 < v < a.

(The Gaussian aspect of the marginal distributions of MBF was crucial to obtain
the regularity of its sample paths.)
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Framework and background

X~Sas(c) (symmetric stable

distribution with index « € (0,2) and

scale parameter ¢ > 0)
= VYieER,

$x(t) = exp(— c"[t])

X~N(0,1):

o
P(|X]| = x) -~ exp (7%)

X~ Sas(c):
P(X]| > x) « dgcx
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Framework and background

We mention by passing that there is another stable extension of MBF called the
Linear Multifractional Stable Field (LMSF) defined for all t € RV as

H(t)— 4

Y(t) = / (e sEOTE SO Y s), (23)

where M,, is any real-valued SaS random measure with Lebesgue control measure
N
on R™.

If N =1, and for some a < b if sup H(t) < 1, then it can be shown (see Stoev
te(a,b)

and Taqqu (2004)) that every version of Y has unbounded paths on any

sub-interval (', b') C (a, b) of positive length.

We believe that this theorem can be extended to N > 2.
This is why we are going to focus on HMSF whose, sample paths are continuous

functions as soon as H is continuous, as the MBF does. (See e.g., Ayache (2018).)
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Motivations and main goals of the talk
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Motivations and main goals of the talk

Dozzi and Shevchenko (2011) introduced the Harmonizable Multifractional Stable
Process (HMSP) in the case N =1 and a € (1,2).

Thanks to a LePage series representation of the process Z (see e.g.,
Samorodnitsky and Taqqu (1994)), they obtained what follows.

Assume that H is a Holder function of order v > H. Then Z has a version whose
is almost surely Holder continuous of any order v < H, and moreover almost
surely, for all T,n > 0, satisfies

sup | Z(t) — Z(s)| = o(8%] log(6)[=*277), § —s 0*, (3.4)
{(LS)G[O,T])
|[t—s[<d
One of the goal of our talk is to show that the power X + % + n of the log

[
is not optimal and can be substituted by é + .
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Motivations and main goals of the talk

Biermé, Lacaux and Scheffler (2011) introduced a large class of harmonizable
multi-operator scaling stable random fields including the HMSF Z with « € (0,2)
and with any N > 1.

They obtained some results for this class which implies what follows.

Assuming H is a locally Lipschitz function, one has :
(i) On any non-empty compact interval / of RV, sample paths of Z are almost
surely Holder functions of any order v < H(/) := miP H(t),

te

This last result is also obtained by using LePage series expansion for Z.

(ii) One has
vr € RV, P(pz(7) = H(7)) = 1, (3.5)
where 2 2
pz(T) := sup {’y € [0,1], lim supM < +oo} (3.6)
t—sT |t Tlg

denotes the pointwise Holder exponent on 7 of Z.
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Motivations and main goals of the talk

The three main goals of our talk are the following.

Goal 1

To obtain, under weaker assumptions on H than locally Lipschitz-continuity,
optimal uniform and pointwise moduli of continuity for Z.

Goal 2 |

To show, under a weaker assumption on H than locally Lipschitz-continuity, that

P(vr e RN, pz(7) = H(7)) =1, (3.7)

which is significantly better than :

vr € RN : P(pz(7) = H(7)) = 1. (3.8)

Goal 3

Finally, to derive an almost sure estimate for the asymptotic behavior of Z at
infinity, and to find some assumptions on H for having optimality for this estimate.
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The field generating HMSF and its wavelet representation
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The field generating HMSF and its wavelet representation

Let the field X = {X(u, v), (u, v) € RN x (0,1)} defined for all
(u,v) € RN x (0,1) by

X(u,v) = sm[/RN Falu, v, )dMo(6)]. (4.9)
where F, is the kernel function defined for all (u,v) € RN x (0,1) and
¢ € RV\ {0} by
el
X is called the field generating the HMSF Z since

Folu,v,§) := and F,(u,v,0)=0. (4.10)

vt € RN, Z(t) = X(t, H(t)). (4.11)

Considering (4.11), properties of Z are strongly influenced by those of X.
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The field generating HMSF and its wavelet representation

Let T, = {1,---,2VN — 1}, and let the sequence (z/thJ’k)(&j’k)eT*XzXZ,\, be a

Meyer orthonormal wavelet basis for L2(R"). Notice that

s (%) = 235 (Px — k), (4.12)
where 15, § € T, are the mother wavelets.

The sequence (12571-,;() v of the complex conjugates of the Fourier

(0,J,K)ET W XZXZ
transforms of the 95 « is also an orthonormal basis for L2(R"), but it is not a
basis for L*(R") if a € (0,2).
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The field generating HMSF and its wavelet representation

In spit of the fact that the kernel function F,(u,v,-) associated to X doesn't
belong to L?(R"), we manage to show that it can be decomposed in L*(RN) on

the sequence (7/’5-J7k)(5j K)ET. XZXIN Which allows obtaining :

Theorem 3

There exists an event 27, of probability 1 such that for all
(u,v,w) € RN x (0,1) x QF, one has, with absolute convergence :

X(u,v,w) = S 2 @u—kv) - W (—k, )]l (w). (4.13)
(6.,k)ET  XZXZN

\Ufsa) are real-valued deterministic C* functions on RY x R such that
Wi (e, v) € S(RY), for all v € R.

| - |lo being the usual (quasi-)norm on L*(RN), one has

(=98] [ Tasnd@eMale)] ~ Sas (el (4.14)
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The field generating HMSF and its wavelet representation

The following crucial lemma, which provides estimates for the random variables

Egcj)k is inspired by some results in (Ayache and Boutard 2017) and (Ayache and

Xiao 2024).

Similarly to them, it is obtained by using LePage series representation for the
L ()
real-valued SaS stochastic field (7)) 5 ; jyer. xzxzn-
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The field generating HMSF and its wavelet representation

Lemma 4

For each « € (0,2), for all n > 0, there exists a positive random variable C such
that for all (9,j,k) € T. x Z x ZN, on the event Q, of probability 1, one has

« oy AL lo] .
|6 < CL+ L)F 4 log & (3 + ] + k), (4.15)

where |a| denotes the integer part of «,

kly o= [ka| + - + [kn|.

Moreover, when a € [1,2), ¥ > 0 is an arbitrary constant and one restricts to
j €7Zy and k € ZN satisfying

[Kloo == max k| < 92, (4.16)

then the following significantly improved version of the inequality (4.15) holds on
Qf foralln>0andde T, :

% NS
€52, < @+ ). (4.17)
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The field generating HMSF and its wavelet representation

Thanks to Lemma 4, it turns out that the random wavelet series representing the
field X converges in a much stronger way than the one we have already seen.

Theorem 5

When their partial sums are well-chosen, the random wavelet series representing
the field X, and all its term by term any order partial derivative with respect to v,

are, on the event Q} of probability 1, uniformly convergent over all compact boxes
on RN x (0,1).

Therefore, X has a version whose sample paths are almost surely continuous
functions on RN x (0,1) and C> with respect to v € (0,1).

Corollary 6

A sufficient condition for the HMISF Z to have continuous sample paths on RV is
that the Hurst functional H be continuous on RV,

Moreover, when H is discontinuous at some point T € RN \ {0}, then, with
probability 1, sample paths of Z are discontinuous functions at .
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Results on path behavior for Z, and study of their optimality

Organization of the talk

© Results on path behavior for Z, and study of their optimality
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Results on path behavior for Z, and study of their optimality

The Hurst function H is assumed to be continuous on RV.

Theorem 7 (Global modulus of continuity)

Let | be an arbitrary non-empty fixed compact box of RV .
One sets H(I) := mi? H(t).
te

Moreover, assume the continuous Hurst function H satisfies the following
uniform Hélder condition : for some finite c, for all (t(), t?)) € |2,

|H(EW) — HE?)| < cft® = ¢@[HD joga (14 [(0 — @71, (5.18)

Then, on the event Q) of probability 1, for all n > 0, one has

|Z(¢V) — 2(t?)]
u
(£)e@)er? |¢1) — t(2>ylﬂ(’) log = 7 (1 + [¢®) — @] 1)

< +o0. (5.19)
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Results on path behavior for Z, and study of their optimality

Sketch of the proof of Theorem 7
First step : one shows the following statement for the generating field X.
Theorem 8 (Global modulus of continuity for X)

Let o >0 and 0 < a< b < 1 be arbitrary and fixed. Then, one has on the event
Q¥ of probability 1, for all n > 0,

sup ‘X(u(l),vl)fX(uQ),vz)!
{(u(l)_u(z))e[_gde ‘u(l) _ @ :NvZ |Og%+n (1 + |u(1) _ u(2)|;1> 4 v — vl

(vi,v2)€la,b]

< +00

(5.20)

where v1 V vo := sup{vq, w2 }.
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Results on path behavior for Z, and study of their optimality

To prove it, one writes for all (u, v,w) € Qp,ap X 2%,
X(u,v,w) = X" (u,v,w) + Xt (u, v,w)
where X (u, v,w) is called high frequency and denotes

Xtuvw)= 3 2@ k) = U (k) (w).
(6,4,k)ET . XZy xZN

and X~ (u, v,w) is the low frequency (the same sum as X (u, v,w) but indexed
onj € (—N)).

e Among properties showed to obtain a version of X whose sample paths are
almost surely continuous function on RV x (0,1), C° with respect to v € (0,1)
(Theorem 5), one showed that X~ is C*° on RN x (0,1). So (5.20) is satisfied if
X is substituted by X .
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Results on path behavior for Z, and study of their optimality

e Moreover, one showed X+ is C* with respect to v € (0,1). Let
(u(l)7 vl)7 (u(2), V2) € Qp,a,b be arbitrary, there is no restriction to assume that
0 < [u®— u(z)‘ <1and v; Vv, = vi. One gets, on the event Q7, that

X (6, 1) - X (4, v2)

< X (00, 1) = X (D) X (0, 1) - X (2, )|

< ‘X+(U(1)7 vl) — X+(u(2), vl)‘ + Gy — wo, (5.21)
where C; is a positive finite random variable not depending on (u(l), v1) and
(u®, ). In view of (5.21) and of the fact that v; V v, = v, it is enough to show

that, for some positive finite random variable C;, not depending on (u®),v;) and
(u(2), vz), one has on 2%,

’X+(u(1)7 v) ,X+(u(2)7 V1)| < Cz,u(l) _ u(2),V1 |ogé+n (1+ |u(1) _ u(2)|1*1)_
(5.22)
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Results on path behavior for Z, and study of their optimality

e Next, consider for all j € Z, (u,v,w) € (0,1) x [—p, 0]V x QF,

Xi(uv,w) = 277 3" W@k, v) = U (k)b (). (5.23)
(8,K)ET . XZN

One proved one more time in view of Theorem 5, the two following inequalities.
Forall j € Z, u™ u® € [—p, 0]V, v € [a, b], and w € Q, for any fixed n > 0,
there exists C3(w), Gs(w) > 0 (not depending on j, v and u(); u(?)

‘Xj(u(l). V,w) — Xj(u(z) v,w)| < G(w NP1+ |j])= ”|u u<2)|1. (5.24)
and,

X (u®, v,w)| < 27 Co(w)(L + L) =+ (5.25)
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Results on path behavior for Z, and study of their optimality

e Since 0 < |u(®) — 4| < 1 there is a unique jo € Z, satisfying
2—(ot+1) |u(1) _ u(2)|1 < o,
In other words, jy is the unique non-negative integer such that

og (|u) — @], ")
log(2)

e Next, notice that, using the triangle inequality, one has that

Jo < <Jo+1
IXT (UM, vy) = XT(u®, )| < Ry (u®, 1@, vy) + Sy (u®, u?, vy),

where

Rjo(u(l)- U<2)- Vl) = Z }XJ‘(U(I)7 Vl) — Xj(u@ Vl) ‘

and .
5000 ) = S X5 () = X5, )]

J=jo+1

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)
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Results on path behavior for Z, and study of their optimality

e Finally, combining the characterizations (5.26) and (5.27) of jp, (5.24) about
every X; and the fact v; < b, on the event £27,, on one hand, one has that

IN

Jo
Calu® — @], Z 2/A=v)(1 4 jyatn
= (5.31)

C4’u(1) - u(2)’:l log =7 (1+ ‘U(l) ) ;1)7

Ry (u®,u®, vy)

IN

and on the other hand, using this time (5.25),

+oo
510(“(1)= u®, Vl) < G Z 27 (1 +j)§+77
J=ho+1
< Golu® — @] logE 1 (14 [u® — @7, (5.32)

The two last inequalities permit us to conclude the proof of Theorem 8.
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Results on path behavior for Z, and study of their optimality

Second step Using the equality Z(t) = X(t, H(t)) and Theorem 8 with a = H,
b= H, a fixed ¢ > 1 such that | C [—p, o]", and any fixed > 0, it follows that,

for some positive finite random variable C; one has, on the event Q}, for all
(t(l)7 t(2)) e l?

|Z((tM) = Z(t®)] (5.33)

< C1<|t(1)7t }1 tW)yvH(? )Iog%M (1+\t +2) )+}H( ) H(t(2))|>.

Moreover, since (2Ng)~*|t®) — t3)| <1, H(/) being the minimum of H on I,
one can derive that

(1) (2)
’t(l) B t(2)‘i_,(t(1))vH(t(2)) _ (2NQ)H(t(1))vH(t<2)) ((ZNQ)_I{t(l) B t(2)|1>H(t Y)WH(t')

< (2Ng)PH [ — )20, (5.34)
Finally combining (5.33) and (5.34), with the uniform Hdolder condition of H on /

for the term |H( M) - H(t(Q))| one obtains the conclusion of Theorem 7. O
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Results on path behavior for Z, and study of their optimality

Theorem 9 (Optimality for global modulus)

Let | be an arbitrary non-empty compact box of RV.

We assume that H satisfies on | the same uniform Hdlder condition (5.18) as
before.

Moreover, assume that there exists some point 70 e [ (the interior of I) such that

H(7®) = H(I) := min H(t). (5.35)

tel

Then, almost surely, one has

|Z(¢W) - Z(t?)]
(e, e)er [¢1) — t(z),?(’) log™ (1+ [tV — @)

= +o0. (5.36)
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Results on path behavior for Z, and study of their optimality

From Theorem 7, we obtain the following pointwise modulus of continuity
Corollary 10 (Pointwise modulus of continuity)

Let T be an arbitrarily fixed point of RN,

We assume that the continuous Hurst function H satisfies the
pointwise Holder condition at 7 : there exists a finite constant ¢ (which may
depend on T) such that for all t in a neighborhood of T, one has

|H(t) = H(7)| < c|t =77 logs (14 |t —7|). (5.37)

Then, on the event Q}, of probability 1, for all 7 > 0 and p > 0, one has

|Z(t) = Z(7)]
sup

G 00, (5.38)
lt=7l<e |t—7"1 log=™" (14|t —7|71)
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Results on path behavior for Z, and study of their optimality

Theorem 11 (Optimality for pointwise modulus)

Let T be an arbitrarily fixed point of RN

We assume that the continuous Hurst function H satisfies the same
pointwise Holder condition at 7 as before.

Then there exists an event EZOM C Q2 (depending on T) of probability 1 such that
on €, -, one has

_— 12(6) = Z(7)

; = 4o0. (5.39)
t—r |t — 78D log® (14 |t — 7|)

Remark that, having obtained a global and pointwise optimal moduli of continuity,
we have achieved Goal 1 of the talk.
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Results on path behavior for Z, and study of their optimality

In broad terms, a sketch of the proof of Theorem 11

First step :

Denoting by Z. the set of even integers, for any given integer m > 2, and any
distinct integers ji, jo, ..., jm belonging to Z., the m sequences of random
variables {5,k } (s, k)eexzvs {€6..k}(5,k)eT*XZNs - -+ s {1E6,jmk }(5,k)eT xZN Are
independent.

Then, because the Sa$ distributions of every eg‘j-?k are heavy-tailed, we use
Borel-Cantelli Lemma to obtain the following proposition.

Proposition 5.1

Let (kj)jen be an arbitrary sequence of elements of ZN. One has almost surely, for

all 6 € T,

‘(Hk'

limsup ——"+ = +oc. (5.40)

j—+oo (1 -‘r_j)a
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Results on path behavior for Z, and study of their optimality

Second step : We prove the following proposition
Proposition 5.2

For any fixed (u,v) € RN x (0,1), there is a positive finite deterministic constant
c(v), depending uniquely on v, such that on the event Q¥ of probability 1, one
has, for all 6 € T,

(o) . o
Es.: iz | _ X(u,v)— X(a,
lim sup Lﬂ < ¢(v)limsup ’~ Eu, Vl) (@ V)L , (5.41)
jotoo (L4+j)= u=d |u—0|flog= (1+|u—dl;")
where _ ' .
[2u] = (2], [Zon]), (5.42)

Therefore, combining both last propositions, for any fixed (z,v) € RV x (0, 1),
there exists an event Q, ;7 C Q}, of probability 1, which depends on « and & but
not on v, such that, on Q, 5, one has

}X(u,V) — X(E,V)}

lim sup — —— - = +oo. (5.43)
u—u \u—u\{logg (1+‘U—U‘; )
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Results on path behavior for Z, and study of their optimality

Third step : Finally, fixing 7 satisfying the pointwise Holder condition for H,
one writes the inequality

: }Z *Z(T)\

lim sup 1
o =7l D logs (14t = 7[77)
. X(t, H (1)) = X(r, H(7))| :

lim sup — limsup

t—T \t—7’|1 Iogu (1—&-\1‘—7’\;1) toT |t — 17|

> (5.44)

‘X (t, H(t ))—X(t,H(T))|
H) Jog (1+|t—7‘|1_1).

One gets the conclusion, that means on the event ﬁa’r the red left-hand member
is infinite because : B

e The term in green is infinite on the event 2, ; by second step.

e The term in blue is finite on Q} combining the Lipschitz-continuity of X with
respect to the second variable, and the pointwise Holder condition at 7 for

H. O
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Results on path behavior for Z, and study of their optimality

Under a bit stronger assumption on H than the previous local pointwise Holder
condition, it can be shown that the pointwise Holder modulus of continuity is
quasi optimal on a universal event of probability 1 not depending on the location :

Theorem 12 (Quasi optimality on a universal event of probability 1)

There exists a universal event ﬁa of probability 1 such that for all T € RN
satisfying
o IR = H(7))

A 0, (5.45)
7|y

t—>T ‘ t—
there exists ¢ > 0 (depending on the function H) such that, on Q. one has

lim sup 12(t) = 2(7)] >c>0. (5.46)

t—T |t — 7'|"1-I(T)
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Results on path behavior for Z, and study of their optimality

Notice that, under the assumption that the Hurst function H is a locally Lipschitz
function on R¥, the conclusion of Theorem 12 is a strictly stronger result than the
equality mentioned in Goal 2 and recalled here.

P(Vr € RV, pz(7) = H(r)) = 1.

Indeed, under the latter assumption, or more generally when H is a locally Holder
function on RN of any arbitrary order v € (H, 1), then the condition (5.45) is
satisfied by all point 7 € RV, thus (3.7) results from Theorem 12.

Therefore, we have reached Goal 2.
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Results on path behavior for Z, and study of their optimality

Theorem 13 (Estimation of the behavior at infinity)

On the event Y, of probability 1, for all n, 0 > 0, one has

12(2)]

sup
‘t‘lzg‘thl__l(t) log=*"(1 + |t|1)

(5.47)

Moreover, when for some finite constants H., € [H, H] C (0,1) and ¢ > 0 the
following inequality holds : for all t € RV,

|H(t) = Hao| < c(log(3 + [th) ™, (5.48)
then (5.47) can equivalently be reformulated as : on Q,, for all n, 0 > 0 one has

1Z(1)|
1
lth>o |t|5 log= (1 + |t|)

< +o0. (5.49)
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Results on path behavior for Z, and study of their optimality

And finally, one results offering optimality for the estimation of behavior at infinity
of Z.

Theorem 14 (Optimality of the estimation of the behavior at infinity)

Assume that there exists three finite constants Hy, € [H, H], 1. > 0, and ¢ > 0
such that for all t € RN, one has

|H(t) — Hoo| < c(log(3 + |t\1)717"°". (5.50)

Then there exists an event Qa of probability 1, such that on Qa, one has

Z(t
lim sup — | £)| = +00. (5.51)
\t|1—>+oo|t|1°° log = (1 a4 ‘t|1)

Theorems 13 and 14 allow us to reach Goal 3 of our talk.

A.Ayache, C.Louckx (ULille) HMSF: Wavelet repr. and paths behavior FGS7, Chemnitz,september 2024 39/40



Results on path behavior for Z, and study of their optimality

References

e Ayache, A., Multifractional Stochastic Fields : Wavelet Strategies In Multifractional
Frameworks, World Scientific (2018)

e Ayache, A., Boutard, G., Stationary increment harmonizable stable fields : upper
estimates on path behavior, J. Theoret. Probab. 30, 1369-1423 (2017)

e Ayache, A., Xiao, Y. : An Optimal Uniform Modulus of Continuity for Harmonizable
Fractional Stable Motion. Transactions of the American Mathematical Society, to appear
e Biermé, B., Lacaux, C.,Scheffler, H.P. : Multi-operator scaling random fields. 2011 in
Stochastic Processes and their Applications 121, issue 11, pp 2642-2677

e M. Dozzi, G. Shevchenko (2011), Real harmonizable multifractional stable process and
its local properties in : Stochastic Processes and their Applications 121, pp 1509-1523

e Samorodnitsky, G., Taqqu, M.S. : Stable Non-Gaussian Random Variables. Chapman
and Hall, London (1994)

e S.Stoev, M.S.Taqqu, "Stochastic properties of the linear multifractional stable
motion”, Advances in applied probability 36 (2004), no. 4, p. 1085-1115. , iv, 1, 65, 91

A.Ayache, C.Louckx (ULille) HMSF: Wavelet repr. and paths behavior FGS7, Chemnitz,september 2024 40 / 40



